Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes

被引:328
作者
Yan, Qiangu
Toghiani, H.
Causey, Heath
机构
[1] Mississippi State Univ, Ctr Adv Vehicular Syst, Mississippi State, MS 39762 USA
[2] Mississippi State Univ, Dave C Swalm Sch Chem Engn, Mississippi State, MS 39762 USA
关键词
PEMFCs; performance; transient response; various conditions;
D O I
10.1016/j.jpowsour.2006.03.077
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The steady-state performance and transient response for H-2/air polymer electrolyte membrane (PEM) fuel cells are investigated in both single fuel cell and stack configurations under a variety of loading cycles and operating conditions. Detailed experimental parameters are controlled and measured under widely varying operating conditions. In addition to polarization curves, feed gas flow rates, temperatures, pressure drop, and relative humidity are measured. Performance of fuel cells was studied using steady-state polarization curves, transient I-V response and electrochemical impedance spectroscopy (EIS) techniques. Different feed gas humidity, operating temperature, feed gas stoichiometry, air pressure, fuel cell size and gas flow patterns were found to affect both the steady state and dynamic response of the fuel cells. It was found that the humidity of cathode inlet gas had a significant effect on fuel cell performance. The experimental results showed that a decrease in the cathode humidity has a detrimental effect on fuel cell steady state and dynamic performance. Temperature was also found to have a significant effect on the fuel cell performance through its effect on membrane conductivity and water transport in the gas diffusion layer (GDL) and catalyst layer. The polarization curves of the fuel cell at different operating temperatures showed that fuel cell performance was improved with increasing temperature from 65 to 75 degrees C. The air stoichiometric flow rate also influenced the performance of the fuel cell directly by supplying oxygen and indirectly by influencing the humidity of the membrane and water flooding in cathode side. The fuel cell steady state and dynamic performance also improved as the operating pressure was increased from 1 to 4 atm. Based on the experimental results, both the steady state and dynamic response of the fuel cells (stack) were analyzed. These experimental data will provide a baseline for validation of fuel cell models. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:492 / 502
页数:11
相关论文
共 46 条
[1]   A model predicting transient responses of proton exchange membrane fuel cells [J].
Amphlett, JC ;
Mann, RF ;
Peppley, BA ;
Roberge, PR ;
Rodrigues, A .
JOURNAL OF POWER SOURCES, 1996, 61 (1-2) :183-188
[2]   Dynamic interaction of a proton exchange membrane fuel cell and a lead-acid battery [J].
Amphlett, JC ;
deOliveira, EH ;
Mann, RF ;
Roberge, PR ;
Rodrigues, A ;
Salvador, JP .
JOURNAL OF POWER SOURCES, 1997, 65 (1-2) :173-178
[3]   Dynamic response of the direct methanol fuel cell under variable load conditions [J].
Argyropoulos, P ;
Scott, K ;
Taama, WM .
JOURNAL OF POWER SOURCES, 2000, 87 (1-2) :153-161
[4]   The effect of operating conditions on the dynamic response of the direct methanol fuel cell [J].
Argyropoulos, P ;
Scott, K ;
Taama, WM .
ELECTROCHIMICA ACTA, 2000, 45 (12) :1983-1998
[5]   Modelling CO poisoning and O2 bleeding in a PEM fuel cell anode [J].
Baschuk, JJ ;
Li, XG .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2003, 27 (12) :1095-1116
[6]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[7]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[8]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[9]   Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description [J].
Ceraolo, M ;
Miulli, C ;
Pozio, A .
JOURNAL OF POWER SOURCES, 2003, 113 (01) :131-144
[10]   PEM fuel cells for transportation and stationary power generation applications [J].
Cleghorn, SJC ;
Ren, X ;
Springer, TE ;
Wilson, MS ;
Zawodzinski, C ;
Zawodzinski, TA ;
Gottesfeld, S .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1997, 22 (12) :1137-1144