Generalised vectorial 8-eigenvalue nonlinear problems for L∞ functionals

被引:3
作者
Katzourakis, Nikos [1 ]
机构
[1] Univ Reading, Dept Math & Stat, Whiteknights Campus,Pepper Lane, Reading RG6 6AX, England
关键词
infinity-Eigenvalue problem; Nonlinear Eigenvalue problems; infinity-Laplacian; L-infinity functionals; Absolute minimisers; Calculus of variation in L-8; Lagrange multipliers; ABSOLUTE MINIMIZERS; EIGENVALUE; EXISTENCE; CONVERGENCE; UNIQUENESS;
D O I
10.1016/j.na.2022.112806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let omega & nbsp; C= R-n, f E C1(RNxn) and g E C1(RN), where N, n E N. We study the minimisation problem of finding u E W01,ao(& OHM;; RN) that satisfies & nbsp;f(Du)L infinity(Q) {? = inf ?f (Dv)} : vE W1,& INFIN; 0 (Q; RN), IIg(v)IIL & INFIN;(Q) = 1 , L & INFIN;(Q)& nbsp;under natural assumptions on f, g. This includes the oo-eigenvalue problem as a special case. Herein we prove the existence of a minimiser uao with extra properties, derived as the limit of minimisers of approximating constrained Lp problems as p-+ oo. A central contribution and novelty of this work is that uao is shown to solve a divergence PDE with measure coefficients, whose leading term is a divergence counterpart equation of the non-divergence infinity-Laplacian. Our results are new even in the scalar case of the infinity-eigenvalue problem.(C) 2022 Published by Elsevier Ltd.
引用
收藏
页数:29
相关论文
共 41 条
  • [1] L∞ Variational Problems with Running Costs and Constraints
    Aronsson, G.
    Barron, E. N.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (01) : 53 - 90
  • [2] Aronsson G.., NOTE DUALITY P UNPUB
  • [3] VISCOSITY SOLUTIONS OF STATIONARY HAMILTON-JACOBI EQUATIONS AND MINIMIZERS OF L∞ FUNCTIONALS
    Barron, E. N.
    Bocea, M.
    Jensen, R. R.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (12) : 5257 - 5265
  • [4] Minimizing the L∞ norm of the gradient with an energy constraint
    Barron, EN
    Jensen, R
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (12) : 1741 - 1772
  • [5] Barron EN, 2001, ARCH RATION MECH AN, V157, P255, DOI 10.1007/s002050100133
  • [6] Lower semicontinuity of L∞ functionals
    Barron, EN
    Jensen, RR
    Wang, CY
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (04): : 495 - 517
  • [7] Γ-convergence of power-law functionals, variational principles in L∞, and applications
    Bocea, Marian
    Nesi, Vincenzo
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (05) : 1550 - 1576
  • [8] A p-Laplacian approximation for some mass optimization problems
    Bouchitté, G
    Buttazzo, G
    De Pascale, L
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (01) : 1 - 25
  • [9] Brock F, 2007, DIFFER INTEGRAL EQU, V20, P429
  • [10] G-convergence and absolute minimizers for supremal functionals
    Champion, T
    De Pascale, L
    Prinari, F
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (01): : 14 - 27