Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar

被引:44
作者
Brosten, Troy R. [1 ]
Bradford, John H. [2 ]
McNamara, James P. [2 ]
Gooseff, Michael N. [3 ]
Zarnetske, Jay P. [4 ]
Bowden, William B. [5 ]
Johnston, Morgan E. [6 ]
机构
[1] US Geol Survey, Storrs, CT 06269 USA
[2] Boise State Univ, Dept Geosci, Boise, ID 83725 USA
[3] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
[4] Oregon State Univ, Dept Geosci, Corvallis, OR 97331 USA
[5] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT 05401 USA
[6] Stone Environm Inc, Montpelier, VT 05602 USA
基金
美国国家科学基金会;
关键词
3D ground-penetrating radar; Permafrost; Thaw bulb; Arctic streams; Hyporheic; SHORT-PULSE RADAR; NORTHERN ALASKA; ARCHAEOLOGICAL FEATURES; 3-DIMENSIONAL GEORADAR; PERMAFROST THICKNESS; HYPORHEIC EXCHANGE; SW GERMANY; RIVER; ARCHITECTURE; RESOLUTION;
D O I
10.1016/j.jhydrol.2009.05.011
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
We acquired three-dimensional (3D) ground-penetrating radar (GPR) data across three stream sites on the North Slope, AK, in August 2005, to investigate the dependence of thaw depth on channel morphology. Data were migrated with mean velocities derived from multi-offset GPR profiles collected across a stream section within each of the 31) survey areas. GPR data interpretations from the alluvial-lined stream site illustrate greater thaw depths beneath riffle and gravel bar features relative to neighboring pool features. The peat-lined stream sites indicate the opposite; greater thaw depths beneath pools and shallower thaw beneath the connecting runs. Results provide detailed 3D geometry of active-layer thaw depths that can support hydrological studies seeking to quantify transport and biogeochemical processes that occur within the hyporheic zone. Published by Elsevier B.V.
引用
收藏
页码:479 / 486
页数:8
相关论文
共 43 条
[1]   Ground-penetrating radar: A tool for monitoring bridge scour [J].
Anderson, Neil L. ;
Ismael, Ahmed M. ;
Thitimakorn, Thanop .
ENVIRONMENTAL & ENGINEERING GEOSCIENCE, 2007, 13 (01) :1-10
[2]   IMPULSE RADAR SOUNDING IN PERMAFROST [J].
ANNAN, AP ;
DAVIS, JL .
RADIO SCIENCE, 1976, 11 (04) :383-394
[3]  
[Anonymous], 2001, SEISMIC DATA ANAL, DOI DOI 10.1190/1.9781560801580
[4]  
Arcone S.A., 1998, Seventh International conference (Proceedings), Yellowknife (Canada), P19
[5]   DIELECTRIC-PROPERTIES OF THAWED ACTIVE LAYERS OVERLYING PERMAFROST USING RADAR AT VHF [J].
ARCONE, SA ;
DELANEY, AJ .
RADIO SCIENCE, 1982, 17 (03) :618-626
[6]   SHORT-PULSE RADAR DETECTION OF GROUNDWATER IN THE SAGAVANIRKTOK RIVER FLOODPLAIN IN EARLY SPRING [J].
ARCONE, SA ;
CHACHO, EF ;
DELANEY, AJ .
WATER RESOURCES RESEARCH, 1992, 28 (11) :2925-2936
[7]   Ground-penetrating radar reflection profiling of groundwater and bedrock in an area of discontinuous permafrost [J].
Arcone, SA ;
Lawson, DE ;
Delaney, AJ ;
Strasser, JC ;
Strasser, JD .
GEOPHYSICS, 1998, 63 (05) :1573-1584
[8]   Towards realistic aquifer models: three-dimensional georadar surveys of Quaternary gravel deltas (Singen Basin, SW Germany) [J].
Asprion, U ;
Aigner, T .
SEDIMENTARY GEOLOGY, 1999, 129 (3-4) :281-297
[9]  
BERES M, 1995, GEOLOGY, V23, P1087, DOI 10.1130/0091-7613(1995)023<1087:MTAOGS>2.3.CO
[10]  
2