Weak Solutions for the Cahn-Hilliard Equation with Degenerate Mobility

被引:68
作者
Dai, Shibin [1 ]
Du, Qiang [2 ]
机构
[1] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
SURFACE MOTION;
D O I
10.1007/s00205-015-0918-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the well-posedness of Cahn-Hilliard equations with degenerate phase-dependent diffusion mobility. We consider a popular form of the equations which has been used in phase field simulations of phase separation and microstructure evolution in binary systems. We define a notion of weak solutions for the nonlinear equation. The existence of such solutions is obtained by considering the limits of Cahn-Hilliard equations with non-degenerate mobilities.
引用
收藏
页码:1161 / 1184
页数:24
相关论文
共 16 条
[11]   MOTION OF INTERFACES GOVERNED BY THE CAHN-HILLIARD EQUATION WITH HIGHLY DISPARATE DIFFUSION MOBILITY [J].
Dai, Shibin ;
Du, Qiang .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (06) :1818-1841
[12]   On the Cahn-Hilliard equation with degenerate mobility [J].
Elliott, CM ;
Garcke, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :404-423
[13]   Phase-separation kinetics in a model with order-parameter-dependent mobility [J].
Puri, S ;
Bray, AJ ;
Lebowitz, JL .
PHYSICAL REVIEW E, 1997, 56 (01) :758-765
[14]  
Royden H. L., 1988, Real analysis, V32
[15]   LINKING ANISOTROPIC SHARP AND DIFFUSE SURFACE MOTION LAWS VIA GRADIENT FLOWS [J].
TAYLOR, JE ;
CAHN, JW .
JOURNAL OF STATISTICAL PHYSICS, 1994, 77 (1-2) :183-197
[16]  
YIN JX, 1992, J DIFFER EQUATIONS, V97, P310