Weak Solutions for the Cahn-Hilliard Equation with Degenerate Mobility

被引:68
作者
Dai, Shibin [1 ]
Du, Qiang [2 ]
机构
[1] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
SURFACE MOTION;
D O I
10.1007/s00205-015-0918-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the well-posedness of Cahn-Hilliard equations with degenerate phase-dependent diffusion mobility. We consider a popular form of the equations which has been used in phase field simulations of phase separation and microstructure evolution in binary systems. We define a notion of weak solutions for the nonlinear equation. The existence of such solutions is obtained by considering the limits of Cahn-Hilliard equations with non-degenerate mobilities.
引用
收藏
页码:1161 / 1184
页数:24
相关论文
共 16 条
[1]  
[Anonymous], 1986, Annali di Matematica Pura ed Applicata, DOI [DOI 10.1007/BF01762360.MR916688, DOI 10.1007/BF01762360]
[2]   HIGHER-ORDER NONLINEAR DEGENERATE PARABOLIC EQUATIONS [J].
BERNIS, F ;
FRIEDMAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :179-206
[3]  
Bertozzi AL, 1996, COMMUN PUR APPL MATH, V49, P85, DOI 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO
[4]  
2-2
[5]  
Blowey J. F., 1991, Eur. J. Appl. Math., V2, P233, DOI DOI 10.1017/S095679250000053X
[6]  
Cahn J.W., 1996, Europ. J. Appl. Math., V7, P287, DOI DOI 10.1017/S0956792500002369
[7]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[8]   OVERVIEW NO-113 - SURFACE MOTION BY SURFACE-DIFFUSION [J].
CAHN, JW ;
TAYLOR, JE .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (04) :1045-1063
[9]   SPINODAL DECOMPOSITION - REPRISE [J].
CAHN, JW ;
HILLIARD, JE .
ACTA METALLURGICA, 1971, 19 (02) :151-+
[10]   COARSENING MECHANISM FOR SYSTEMS GOVERNED BY THE CAHN-HILLIARD EQUATION WITH DEGENERATE DIFFUSION MOBILITY [J].
Dai, Shibin ;
Du, Qiang .
MULTISCALE MODELING & SIMULATION, 2014, 12 (04) :1870-1889