Study on effect of poly (ethylene oxide) addition and in-situ porosity generation on poly (vinylidene fluoride)-glass ceramic composite membranes for lithium polymer batteries

被引:34
作者
Shubha, Nageswaran [1 ]
Prasanth, Raghavan [1 ,2 ]
Hng, Huey Hoon [1 ]
Srinivasan, Madhavi [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Energy Res Inst NW ERI N, Singapore 637553, Singapore
基金
新加坡国家研究基金会;
关键词
Polymer electrolyte; Lithium ion batteries; Polymer blend; In-situ porosity generation; Electrospinning; TEMPERATURE IONIC LIQUID; ELECTROCHEMICAL CHARACTERIZATION; HFP ELECTROLYTE; CONDUCTIVITY; FILLER; ENHANCEMENT; SIZE;
D O I
10.1016/j.jpowsour.2014.05.074
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of blending polyethylene oxide with poly (vinylidene fluoride)-lithium aluminum germanium phosphate (LAGP) composite and in-situ porosity generation on the electrochemical performance of polymer electrolytes based on non-woven fibrous mats is studied. Electrospinning process parameters are controlled to get a fibrous membrane consisting of bead-free, multilayered, three dimensional network structure of ultrafine fibers. The electrospun membranes are subjected to a preferential polymer dissolution process to prepare a highly porous structure. The membranes show high surface roughness with uniformly sized and distributed pores on the fibers. The membranes with good mechanical strength, thermal stability and high porosity exhibit high swelling when activated with liquid electrolyte. The prepared composite polymer electrolytes show high ionic conductivity. The addition of the glass ceramic improves the mechanical and thermal stability, while blending and in-situ porosity generation improves the ionic conductivity, charge-discharge performance, cycling stability, interface properties and compatibility with lithium electrode. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 57
页数:10
相关论文
共 41 条
[31]   Polymer electrolytes: The key to lithium polymer batteries [J].
Scrosati, B. ;
Vincent, C.A. .
MRS Bulletin, 2000, 25 (03) :28-30
[32]   Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)-layered clay nanocomposite fibrous membranes for lithium ion batteries [J].
Shubha, Nageswaran ;
Prasanth, Raghavan ;
Hng, Huey Hoon ;
Srinivasan, Madhavi .
MATERIALS RESEARCH BULLETIN, 2013, 48 (02) :526-537
[33]   Nanofiller incorporated poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) composite electrolytes for lithium batteries [J].
Stephan, A. Manuel ;
Nahm, Kee Suk ;
Kumar, T. Prem ;
Kulandainathan, M. Anbu ;
Ravi, G. ;
Wilson, J. .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :1316-1321
[34]   Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes [J].
Sun, HY ;
Takeda, Y ;
Imanishi, N ;
Yamamoto, O ;
Sohn, HJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (07) :2462-2467
[35]   Nano-size LiAlO2 ceramic filler incorporated porous PVDF-co-HFP electrolyte for lithium-ion battery applications [J].
Sundaram, N. T. Kalyana ;
Subramania, A. .
ELECTROCHIMICA ACTA, 2007, 52 (15) :4987-4993
[36]   Composite polyether electrolytes with Lewis acid type additives [J].
Wieczorek, W ;
Zalewska, A ;
Raducha, D ;
Florjanczyk, Z ;
Stevens, JR .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (02) :352-360
[37]   Developments in polymer electrolytes for lithium batteries [J].
Wright, PV .
MRS BULLETIN, 2002, 27 (08) :597-602
[38]   In situ ceramic fillers of electrospun thermoplastic polyurethane/poly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries [J].
Wu, Na ;
Cao, Qi ;
Wang, Xianyou ;
Li, Sheng ;
Li, Xiaoyun ;
Deng, Huayang .
JOURNAL OF POWER SOURCES, 2011, 196 (22) :9751-9756
[39]   Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J].
Xu, K .
CHEMICAL REVIEWS, 2004, 104 (10) :4303-4417
[40]   Study of the interfacial stability of PVdF/HFP gel electrolytes with sub-micro- and nano-sized surface-modified silicas [J].
Zalewska, A. ;
Walkowiak, M. ;
Niedzicki, L. ;
Jesionowski, T. ;
Langwald, N. .
ELECTROCHIMICA ACTA, 2010, 55 (04) :1308-1313