Robust stability in a classical and modern context

被引:0
作者
Halsey, Kelvin M. [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
来源
2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8 | 2005年
关键词
DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Excluding the open loop gain of a feedback system from a region about the origin of the Nichols chart yields a natural guarantee of robust stability which is commonly used in the analysis of flight control systems. This paper shows that a generalised form of M-circle, based upon a contour of constant vertical bar S vertical bar + vertical bar T vertical bar, is symmetrical on the Nichols chart and yields a stability margin consistent with the gain and phase margin requirements of the USAF. This new margin, motivated on purely classical grounds, is shown to be equal to the robust stability margin associated wit the loopshaping design procedure of McFarlane and Glover. A corresponding interpretation is obtained for the multivariable case.
引用
收藏
页码:2308 / 2313
页数:6
相关论文
共 9 条
[1]  
Glover K, 2000, IEEE DECIS CONTR P, P4084, DOI 10.1109/CDC.2000.912354
[2]  
LEE KL, 1992, P 1 IEEE C CONTR APP, P214
[3]  
MACIEJOWSKI JM, 1989, SER ELECT SYSTEMS EN
[4]   A LOOP SHAPING DESIGN PROCEDURE USING H-INFINITY-SYNTHESIS [J].
MCFARLANE, D ;
GLOVER, K .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (06) :759-769
[5]  
MUIR E, 1997, SER LECT NOTES CONTR, V224, P421
[6]  
Panagopoulos H, 2000, INT J ROBUST NONLIN, V10, P1249, DOI 10.1002/1099-1239(20001230)10:15<1249::AID-RNC514>3.0.CO
[7]  
2-7
[8]  
Vinnicombe G., 2001, UNCERTAINTY FEEDBACK
[9]  
1975, GEN SPECIFICATION FL