Study on BP Neural Network PID Control for Hydro-viscous Drive System

被引:1
作者
Meng, Qingrui [1 ]
Wang, Jian [1 ]
Wang, Daoming [1 ]
Wang, Kai [1 ]
Song, Baocheng [1 ]
机构
[1] China Univ Min & Technol, Sch Mech & Elect Engn, Xuzhou, Jiangsu, Peoples R China
来源
ENERGY DEVELOPMENT, PTS 1-4 | 2014年 / 860-863卷
关键词
Hydro-viscous Drive; Speed Regulating Start; BP Neural Network PID Control; AMESim/MATLAB Co-simulation;
D O I
10.4028/www.scientific.net/AMR.860-863.1525
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Establish simulation model based on BP neural network PID control to solve the issue of hydro-viscous drive speed regulating start control strategies, experimental verifications prove its adaptability through AMESim/MATLAB co-simulation, research shows that: BP neural network PID control for hydro-viscous drive has a good self-correcting effect, the output speed adjusts towards the opposite direction according to the error and the error rate, while maintaining the smoothness of the output curve, thereby it can avoid over-large mechanical shocks, it indicates the BP neural network PID control is suitable for speed regulating start.
引用
收藏
页码:1525 / 1529
页数:5
相关论文
共 7 条
[1]  
Huang Jiahai, 2011, RES MECH FLIUD POW T
[2]  
Huang Jiahai, 2008, MECH ENG, V21
[3]  
Liu Zilong, 2004, SYSTEMS ENG ELECT, V15, p598~604
[4]   Tuning of fuzzy PID controller for Smith predictor [J].
Rong Hui-gui ;
Zheng Hui ;
Li Zheng-qiang ;
Xia Yu-xiang .
JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2010, 17 (03) :566-571
[5]   Fuzzy self-tuning PID control of the operation temperatures in a two-staged membrane separation process [J].
Wang, Lei ;
Du, Wencai ;
Wang, Hai ;
Wu, Hong .
JOURNAL OF NATURAL GAS CHEMISTRY, 2008, 17 (04) :409-414
[6]  
Xie Fangwei, 2009, MINING SCI TECHNOLOG, V19
[7]  
Zhou Manshan, 2005, COAL SCI ENG CHINA, V11