Diffusion normalized Huber adaptive filtering algorithm

被引:34
|
作者
Li, Zhi [1 ]
Guan, Sihai [1 ]
机构
[1] Xidian Univ, Sch Electromech Engn, 2 South Taibai Rd, Xian 710071, Shaanxi, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2018年 / 355卷 / 08期
基金
中国国家自然科学基金;
关键词
LEAST-MEAN SQUARES; DISTRIBUTED ESTIMATION; STEP-SIZE; FORMULATION;
D O I
10.1016/j.jfranklin.2018.03.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an adapt-then-combine (ATC) diffusion normalized Huber adaptive filtering (ATC-DNHuber) algorithm for distributed estimation in impulsive interference environments. Firstly, a normalized Huber adaptive filter (NHuber) is developed to reduce the effect of the eigenvalue spread of the input signal. Then we extend the NHuber to develop an ATC diffusion algorithm by applying the NHuber algorithm at all agents. In addition, the mean stability performance and computational complexity are analyzed theoretically. In addition, Furthermore, simulation results demonstrate that the ATC-DNHuber algorithm can perform better in identifying the unknown coefficients under the complex and changeable impulsive interference environments. (C) 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3812 / 3825
页数:14
相关论文
共 50 条
  • [31] Adaptive Combined Diffusion EM Algorithm for Distributed Estimation with Unreliable Nodes
    Wen, Fuxi
    Wang, Zhongmin
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 78 - 82
  • [32] Adaptive Diffusion Pairwise Fused Lasso LMS Algorithm Over Networks
    Huang, Wei
    Shan, Haojie
    Xu, Jinshan
    Yao, Xinwei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) : 5816 - 5827
  • [33] A Sampling Algorithm for Diffusion Networks
    Tiglea, Daniel G.
    Candido, Renato
    Silva, Magno T. M.
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2175 - 2179
  • [34] The p-norm generalization of the LMS algorithm for adaptive filtering
    Kivinen, J
    Warmuth, MK
    Hassibi, B
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (05) : 1782 - 1793
  • [35] Adaptive Diffusion Schemes for Heterogeneous Networks
    Fernandez-Bes, Jesus
    Arenas-Garcia, Jeronimo
    Silva, Magno T. M.
    Azpicueta-Ruiz, Luis A.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (21) : 5661 - 5674
  • [36] A Family of Robust Diffusion Adaptive Filtering Algorithms Based on the Tanh Framework
    Huo, Yuanlian
    Xu, Tianci
    Qi, Yongfeng
    Xu, Yurong
    Ding, Ruibo
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 43 (3) : 1938 - 1956
  • [37] On the diffusion NLMS algorithm applied to adaptive networks: Stochastic modeling and performance comparisons
    Matsuo, Marcos Vinicius
    Kuhn, Eduardo Vinicius
    Seara, Rui
    DIGITAL SIGNAL PROCESSING, 2021, 113
  • [38] Performance Analysis of the Robust Diffusion Normalized Least Mean p-Power Algorithm
    Lu, Lu
    Zhao, Haiquan
    Wang, Wenyuan
    Yu, Yi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (12) : 2047 - 2051
  • [39] Robust diffusion LMS over adaptive networks
    Ashkezari-Toussi, Soheila
    Sadoghi-Yazdi, Hadi
    SIGNAL PROCESSING, 2019, 158 : 201 - 209
  • [40] L0-norm constraint normalized logarithmic subband adaptive filter algorithm
    Shen, Zijie
    Huang, Tianmin
    Zhou, Kun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2018, 12 (05) : 861 - 868