ON PRIME NONPRIMITIVE VON NEUMANN REGULAR ALGEBRAS

被引:22
作者
Abrams, Gene [1 ]
Bell, Jason P. [2 ]
Rangaswamy, Kulumani M. [1 ]
机构
[1] Univ Colorado, Dept Math, Colorado Springs, CO 80918 USA
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Leavitt path algebra; prime ring; primitive ring; countable separation property; LEAVITT PATH ALGEBRAS; ARBITRARY GRAPHS; RINGS; SOCLE;
D O I
10.1090/S0002-9947-2014-05878-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be any directed graph, and K any field. We classify those graphs E for which the Leavitt path algebra L-K(E) is primitive. As a consequence, we obtain classes of examples of von Neumann regular prime rings which are not primitive.
引用
收藏
页码:2375 / 2392
页数:18
相关论文
共 27 条
[11]  
Faith C., 1999, MATH SURVEYS MONOGRA, V65
[12]   PRIME VON-NEUMANN REGULAR RINGS AND PRIMITIVE GROUP ALGEBRAS [J].
FISHER, JW ;
SNIDER, RL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (02) :244-250
[13]   GROUP RINGS OF FREE PRODUCTS ARE PRIMITIVE [J].
FORMANEK, E .
JOURNAL OF ALGEBRA, 1973, 26 (03) :508-511
[14]  
Goodearl KR, 2009, CONTEMP MATH, V480, P165
[15]  
Kaplansky I., 1970, C BOARD MATH SCI REG
[16]   A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras III, ideal structures [J].
Katsura, Takeshi .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 :1805-1854
[17]  
Lam T. Y., 2001, GRADUATE TEXTS MATH, V131
[18]   PRIMITIVITY OF PRIME RINGS [J].
LANSKI, C ;
RESCO, R ;
SMALL, L .
JOURNAL OF ALGEBRA, 1979, 59 (02) :395-398
[19]  
Leavitt W. G., 1962, Trans. Amer. Math. Soc., V103, P113, DOI [10.2307/1993743, DOI 10.2307/1993743]
[20]  
MESYAN Z., PREPRINT