Intersection of stem cell biology and engineering towards next generation in vitro models of human fibrosis

被引:7
作者
Wang, Erika Yan [1 ,2 ]
Zhao, Yimu [2 ,3 ]
Okhovatian, Sargol [2 ,3 ]
Smith, Jacob B. [3 ,4 ]
Radisic, Milica [2 ,3 ,4 ]
机构
[1] MIT, David H Koch Inst Integrat Canc Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Toronto, Inst Biomed Engn, Toronto, ON, Canada
[3] Univ Hlth Network, Toronto Gen Hosp Res Inst, Toronto, ON, Canada
[4] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON, Canada
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会; 加拿大健康研究院; 加拿大创新基金会;
关键词
tissue engineeering stem cell; fibrosis disease modeling organ on a chip (OCC); biosensor machine learning (ML); TISSUE; ORGANOIDS; DISEASE; REPAIR; HEART; MYOFIBROBLASTS; MACROPHAGES; FIBROBLASTS; MECHANISMS; MATRIX;
D O I
10.3389/fbioe.2022.1005051
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Human fibrotic diseases constitute a major health problem worldwide. Fibrosis involves significant etiological heterogeneity and encompasses a wide spectrum of diseases affecting various organs. To date, many fibrosis targeted therapeutic agents failed due to inadequate efficacy and poor prognosis. In order to dissect disease mechanisms and develop therapeutic solutions for fibrosis patients, in vitro disease models have gone a long way in terms of platform development. The introduction of engineered organ-on-a-chip platforms has brought a revolutionary dimension to the current fibrosis studies and discovery of anti-fibrotic therapeutics. Advances in human induced pluripotent stem cells and tissue engineering technologies are enabling significant progress in this field. Some of the most recent breakthroughs and emerging challenges are discussed, with an emphasis on engineering strategies for platform design, development, and application of machine learning on these models for anti-fibrotic drug discovery. In this review, we discuss engineered designs to model fibrosis and how biosensor and machine learning technologies combine to facilitate mechanistic studies of fibrosis and pre-clinical drug testing.
引用
收藏
页数:21
相关论文
共 131 条
[1]   Targeting cardiac fibrosis with engineered T cells [J].
Aghajanian, Haig ;
Kimura, Toru ;
Rurik, Joel G. ;
Hancock, Aidan S. ;
Leibowitz, Michael S. ;
Li, Li ;
Scholler, John ;
Monslow, James ;
Lo, Albert ;
Han, Wei ;
Wang, Tao ;
Bedi, Kenneth ;
Morley, Michael P. ;
Saldana, Ricardo A. Linares ;
Bolar, Nikhita A. ;
McDaid, Kendra ;
Assenmacher, Charles-Antoine ;
Smith, Cheryl L. ;
Wirth, Dagmar ;
June, Carl H. ;
Margulies, Kenneth B. ;
Jain, Rajan ;
Pure, Ellen ;
Albelda, Steven M. ;
Epstein, Jonathan A. .
NATURE, 2019, 573 (7774) :430-+
[2]   Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis [J].
Akhmetshina, Alfiya ;
Palumbo, Katrin ;
Dees, Clara ;
Bergmann, Christina ;
Venalis, Paulius ;
Zerr, Pawel ;
Horn, Angelika ;
Kireva, Trayana ;
Beyer, Christian ;
Zwerina, Jochen ;
Schneider, Holm ;
Sadowski, Anika ;
Riener, Marc-Oliver ;
MacDougald, Ormond A. ;
Distler, Oliver ;
Schett, Georg ;
Distler, Joerg H. W. .
NATURE COMMUNICATIONS, 2012, 3
[3]   Tissue-engineered disease models [J].
不详 .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (12) :879-880
[4]  
[Anonymous], 2009, Artificial neural networks
[5]   Dysregulated expression of hypoxia-inducible factors augments myofibroblasts differentiation in idiopathic pulmonary fibrosis [J].
Aquino-Galvez, Arnoldo ;
Gonzalez-Avila, Georgina ;
Lorena Jimenez-Sanchez, Laura ;
Aquiles Maldonado-Martinez, Hector ;
Cisneros, Jose ;
Toscano-Marquez, Fernanda ;
Castillejos-Lopez, Manuel ;
Maria Torres-Espindola, Luz ;
Velazquez-Cruz, Rafael ;
Olivera Rodriguez, Victor Hugo ;
Flores-Soto, Edgar ;
Solis-Chagoyan, Hector ;
Cabello, Carlos ;
Zuniga, Joaquin ;
Romero, Yair .
RESPIRATORY RESEARCH, 2019, 20 (1) :130
[6]   Fibrotic microtissue array to predict anti-fibrosis drug efficacy [J].
Asmani, Mohammadnabi ;
Velumani, Sanjana ;
Li, Yan ;
Wawrzyniak, Nicole ;
Hsia, Isaac ;
Chen, Zhaowei ;
Hinz, Boris ;
Zhao, Ruogang .
NATURE COMMUNICATIONS, 2018, 9
[7]   First-in-human high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline [J].
Averyanov, Alexander ;
Koroleva, Irina ;
Konoplyannikov, Mikhail ;
Revkova, Veronika ;
Lesnyak, Victor ;
Kalsin, Vladimir ;
Danilevskaya, Olesya ;
Nikitin, Alexey ;
Sotnikova, Anna ;
Kotova, Svetlana ;
Baklaushev, Vladimir .
STEM CELLS TRANSLATIONAL MEDICINE, 2020, 9 (01) :6-16
[8]   A primer in artificial intelligence in cardiovascular medicine [J].
Benjamins, J. W. ;
Hendriks, T. ;
Knuuti, J. ;
Juarez-Orozco, L. E. ;
van der Harst, P. .
NETHERLANDS HEART JOURNAL, 2019, 27 (09) :392-402
[9]   Engineering an Environment for the Study of Fibrosis: A 3D Human Muscle Model with Endothelium Specificity and Endomysium [J].
Bersini, Simone ;
Gilardi, Mara ;
Ugolini, Giovanni S. ;
Sansoni, Veronica ;
Talo, Giuseppe ;
Perego, Silvia ;
Zanotti, Simona ;
Ostano, Paola ;
Mora, Marina ;
Soncini, Monica ;
Vanoni, Marco ;
Lombardi, Giovanni ;
Moretti, Matteo .
CELL REPORTS, 2018, 25 (13) :3858-+
[10]   Engineered Microenvironments for Maturation of Stem Cell Derived Cardiac Myocytes [J].
Besser, Rachel R. ;
Ishahak, Matthew ;
Mayo, Vera ;
Carbonero, Daniel ;
Claure, Isabella ;
Agarwal, Ashutosh .
THERANOSTICS, 2018, 8 (01) :124-140