Using DNA nanostructures to harvest light and create energy transfer and harvesting systems

被引:3
作者
Diaz, Sebastian A. [1 ]
Buckhout-White, Susan [1 ]
Brown, Carl W., III [1 ]
Samanta, Anirban [1 ]
Klein, William P. [2 ]
Ancona, Mario G. [3 ]
Dwyer, Chris L. [4 ]
Goldman, Ellen R. [1 ]
Melinger, Joseph S. [3 ]
Cunningham, Paul D. [3 ]
Spillmann, Chris M. [1 ]
Medintz, Igor L. [1 ]
机构
[1] US Naval Res Lab, Ctr Bio Mol Sci & Engn, Code 6900, Washington, DC 20375 USA
[2] Boise State Univ, Micron Sch Mat Sci & Engn, Nanoscale Mat & Device Grp, Boise, ID 83725 USA
[3] US Naval Res Lab, Opt Sci Div, Code 5600, Washington, DC 20375 USA
[4] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
来源
SPIE BIOPHOTONICS AUSTRALASIA | 2016年 / 10013卷
关键词
SEMICONDUCTOR QUANTUM DOTS; PHOTONIC WIRES; TRANSFER RELAYS; WAVE-GUIDES; DELIVERY; FRET; CASCADES; PROTEINS; DEVICES; LIGAND;
D O I
10.1117/12.2242727
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
DNA is a biocompatible scaffold that allows for the design of a variety of nanostructures, from straightforward double stranded DNA to more complex DNA origami and 3-D structures. By modifying the structures, with dyes, nanoparticles, or enzymes, they can be used to create light harvesting and energy transfer systems. We have focused on using Forster resonance energy transfer (FRET) between organic fluorophores separated with nanometer precision based on the DNAs defined positioning. Using FRET theory we can control the direction of the energy flow and optimize the design parameters to increase the systems efficiency. The design parameters include fluorophore selection, separation, number, and orientation among others. Additionally the use of bioluminescence resonance energy transfer (BRET) allowed the use of chemical energy, as opposed to photonic, to activate the systems. Here we discuss a variety of systems, such as the longest reported DNA-based molecular photonic wires (> 30 nm), dendrimeric light harvesting systems, and semiconductor nanocrystals integrated systems where they act as both scaffold and antennae for the original excitation. Using a variety of techniques, a comparison of different types of structures as well as heterogeneous vs. homogenous FRET was realized.
引用
收藏
页数:10
相关论文
共 52 条
[1]   Novel multistep BRET-FRET energy transfer using nanoconjugates of firefly proteins, quantum dots, and red fluorescent proteins [J].
Alam, Rabeka ;
Zylstra, Joshua ;
Fontaine, Danielle M. ;
Branchini, Bruce R. ;
Maye, Mathew M. .
NANOSCALE, 2013, 5 (12) :5303-5306
[2]   Functionalized DNA nanostructures for light harvesting and charge separation [J].
Albinsson, Bo ;
Hannestad, Jonas K. ;
Boerjesson, Karl .
COORDINATION CHEMISTRY REVIEWS, 2012, 256 (21-22) :2399-2413
[3]   Emerging non-traditional Forster resonance energy transfer configurations with semiconductor quantum dots: Investigations and applications [J].
Algar, W. Russ ;
Kim, Hyungki ;
Medintz, Igor L. ;
Hildebrandt, Niko .
COORDINATION CHEMISTRY REVIEWS, 2014, 263 :65-85
[4]   Assembly of a Concentric Forster Resonance Energy Transfer Relay on a Quantum Dot Scaffold: Characterization and Application to Multiplexed Protease Sensing [J].
Algar, W. Russ ;
Ancona, Mario G. ;
Malanoski, Anthony P. ;
Susumu, Kimihiro ;
Medintz, Igor L. .
ACS NANO, 2012, 6 (12) :11044-11058
[5]   Improved Peptidyl Linkers for Self-Assembly of Semiconductor Quantum Dot Bioconjugates [J].
Berti, Lorenzo ;
D'Agostino, Paola Serena ;
Boeneman, Kelly ;
Medintz, Igor L. .
NANO RESEARCH, 2009, 2 (02) :121-129
[6]   Self-Assembled Quantum Dot-Sensitized Multivalent DNA Photonic Wires [J].
Boeneman, Kelly ;
Prasuhn, Duane E. ;
Blanco-Canosa, Juan B. ;
Dawson, Philip E. ;
Melinger, Joseph S. ;
Ancona, Mario ;
Stewart, Michael H. ;
Susumu, Kimihiro ;
Huston, Alan ;
Medintz, Igor L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (51) :18177-18190
[7]   Cytotoxicity of Quantum Dots Used for In Vitro Cellular Labeling: Role of QD Surface Ligand, Delivery Modality, Cell Type, and Direct Comparison to Organic Fluorophores [J].
Bradburne, Christopher E. ;
Delehanty, James B. ;
Gemmill, Kelly Boeneman ;
Mei, Bing C. ;
Mattoussi, Hedi ;
Susumu, Kimihiro ;
Blanco-Canosa, Juan B. ;
Dawson, Philip E. ;
Medintz, Igor L. .
BIOCONJUGATE CHEMISTRY, 2013, 24 (09) :1570-1583
[8]   Assembling programmable FRET-based photonic networks using designer DNA scaffolds [J].
Buckhout-White, Susan ;
Spillmann, Christopher M. ;
Algar, W. Russ ;
Khachatrian, Ani ;
Melinger, Joseph S. ;
Goldman, Ellen R. ;
Ancona, Mario G. ;
Medintz, Igor L. .
NATURE COMMUNICATIONS, 2014, 5
[9]   Multimodal Characterization of a Linear DNA-Based Nanostructure [J].
Buckhout-White, Susan ;
Ancona, Mario ;
Oh, Eunkeu ;
Deschamps, Jeffrey R. ;
Stewart, Michael H. ;
Blanco-Canosa, Juan B. ;
Dawson, Philip E. ;
Goldman, Ellen R. ;
Medintz, Igor L. .
ACS NANO, 2012, 6 (02) :1026-1043
[10]   Excitonic AND Logic Gates on DNA Brick Nanobreadboards [J].
Cannon, Brittany L. ;
Kellis, Donald L. ;
Davis, Paul H. ;
Lee, Jeunghoon ;
Kuang, Wan ;
Hughes, William L. ;
Graugnard, Elton ;
Yurke, Bernard ;
Knowlton, William B. .
ACS PHOTONICS, 2015, 2 (03) :398-404