Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and Coatings

被引:205
作者
Sakulkhu, Usawadee [1 ]
Mahmoudi, Morteza [2 ,3 ]
Maurizi, Lionel [1 ]
Salaklang, Jatuporn [1 ]
Hofmann, Heinrich [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Powder Technol, Lausanne, Switzerland
[2] Univ Tehran Med Sci, Fac Pharm, Dept Nanotechnol, Tehran, Iran
[3] Univ Tehran Med Sci, Fac Pharm, Nantechnol Res Ctr, Tehran, Iran
基金
瑞士国家科学基金会;
关键词
IN-VIVO; MAGNETIC NANOPARTICLES; DEXTRAN; SIZE; CYTOTOXICITY; TRANSFECTION; PARTICLES; DELIVERY; CHARGE; VITRO;
D O I
10.1038/srep05020
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Because of their biocompatibility and unique magnetic properties, superparamagnetic iron oxide nanoparticles NPs (SPIONs) are recognized as some of the most prominent agents for theranostic applications. Thus, understanding the interaction of SPIONs with biological systems is important for their safe design and efficient applications. In this study, SPIONs were coated with 2 different polymers: polyvinyl alcohol polymer (PVA) and dextran. The obtained NPs with different surface charges (positive, neutral, and negative) were used as a model study of the effect of surface charges and surface polymer materials on protein adsorption using a magnetic separator. We found that the PVA-coated SPIONs with negative and neutral surface charge adsorbed more serum proteins than the dextran-coated SPIONs, which resulted in higher blood circulation time for PVA-coated NPs than the dextran-coated ones. Highly abundant proteins such as serum albumin, serotransferrin, prothrombin, alpha-fetoprotein, and kininogen-1 were commonly found on both PVA- and dextran-coated SPIONs. By increasing the ionic strength, soft- and hard-corona proteins were observed on 3 types of PVA- SPIONs. However, the tightly bound proteins were observed only on negatively charged PVA- coated SPIONs after the strong protein elution.
引用
收藏
页数:9
相关论文
共 53 条
[1]   In vitro studies of magnetically enhanced transfection in COS-7 cells [J].
Ang, D. ;
Tay, C. Y. ;
Tan, L. P. ;
Preiser, P. R. ;
Ramanujan, R. V. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2011, 31 (07) :1445-1457
[2]   Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro [J].
Berry, CC ;
Wells, S ;
Charles, S ;
Curtis, ASG .
BIOMATERIALS, 2003, 24 (25) :4551-4557
[3]   Cell response to dextran-derivatised iron oxide nanoparticles post internalisation [J].
Berry, CC ;
Wells, S ;
Charles, S ;
Aitchison, G ;
Curtis, ASG .
BIOMATERIALS, 2004, 25 (23) :5405-5413
[4]   Do plasma proteins distinguish between liposomes of varying charge density? [J].
Capriotti, Anna Laura ;
Caracciolo, Giulio ;
Cavaliere, Chiara ;
Foglia, Patrizia ;
Pozzi, Daniela ;
Samperi, Roberto ;
Lagana, Aldo .
JOURNAL OF PROTEOMICS, 2012, 75 (06) :1924-1932
[5]   Detailed identification of plasma proteins adsorbed on copolymer nanoparticles [J].
Cedervall, Tommy ;
Lynch, Iseult ;
Foy, Martina ;
Berggard, Tord ;
Donnelly, Seamas C. ;
Cagney, Gerard ;
Linse, Sara ;
Dawson, Kenneth A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (30) :5754-5756
[6]   Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles [J].
Cedervall, Tommy ;
Lynch, Iseult ;
Lindman, Stina ;
Berggard, Tord ;
Thulin, Eva ;
Nilsson, Hanna ;
Dawson, Kenneth A. ;
Linse, Sara .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (07) :2050-2055
[7]   Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles [J].
Chastellain, A ;
Petri, A ;
Hofmann, H .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 278 (02) :353-360
[8]   Nanoparticles reconstruct lipids [J].
Dawson, Kenneth A. ;
Salvati, Anna ;
Lynch, Iseult .
NATURE NANOTECHNOLOGY, 2009, 4 (02) :84-85
[9]   Immunological properties of engineered nanomaterials [J].
Dobrovolskaia, Marina A. ;
Mcneil, Scott E. .
NATURE NANOTECHNOLOGY, 2007, 2 (08) :469-478
[10]   Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications [J].
Gupta, Ajay Kumar ;
Naregalkar, Rohan R. ;
Vaidya, Vikas Deep ;
Gupta, Mona .
NANOMEDICINE, 2007, 2 (01) :23-39