Fibroin/Polyaniline microfibrous mat. Preparation and electrochemical characterization as reactive sensor

被引:30
作者
Ismail, Yahya A. [1 ]
Martinez, Jose G. [2 ]
Otero, Toribio F. [1 ,2 ]
机构
[1] ASharqiyah Univ, Dept Basic Sci, Div Chem, Ibra 400, Oman
[2] Univ Politecn Cartagena UPCT, Ctr Electrochem & Intelligent Mat CEMI, E-30203 Cartagena, Spain
关键词
Polyaniline; Sensor; Electrochemical reaction; Microfibrous mat; Silk; ELECTROACTIVE CONDUCTING POLYMERS; ARTIFICIAL MUSCLES; POLYANILINE NANOSTRUCTURES; CONJUGATED POLYMERS; CORROSION CONTROL; FUEL-CELLS; PART; ACTUATORS; POLYMERIZATION; MEMBRANE;
D O I
10.1016/j.electacta.2014.01.073
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A first time report on the reactive sensing capabilities of polyaniline (PAN!) is presented. Microfibrous silk fibroin mats were coated with polyaniline (PANI) through in situ chemical polymerization. The mat gives closed coulovoltammetric responses in acidic aqueous solution, indicating that only reversible PANI oxidation/reduction reactions occur. Inside the reversible range the chronopotentiometric responses change with (sense) the reaction variables: electrolyte concentration, pH, temperature and driving current. The potential of the materials, or the consumed electrical energy, for a constant reaction time follow the linear or semilogarithmic relationships with each of the experimental variables predicted by the electrochemical kinetics. The reversible charge from the closed coulovoltammetric loop also senses the chemical or thermal energetic conditions of the reaction acting on the conformational movements getting deeper oxidation states for rising energetic working conditions. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:501 / 510
页数:10
相关论文
共 47 条
[1]   A simple method to estimate the oxidation state of polyanilines [J].
Albuquerque, JE ;
Mattoso, LHC ;
Balogh, DT ;
Faria, RM ;
Masters, JG ;
MacDiarmid, AG .
SYNTHETIC METALS, 2000, 113 (1-2) :19-22
[2]   Electrochemical supercapacitor application of electroless surface polymerization of polyaniline nanostructures [J].
Amarnath, Chellachamy A. ;
Chang, Jin Ho ;
Kim, Doyoung ;
Mane, Rajaram S. ;
Han, Sung-Hwan ;
Sohn, Daewon .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 113 (01) :14-17
[3]   Conducting polymers in microelectronics [J].
Angelopoulos, M .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (01) :57-75
[4]  
Arias-Pardilla J., 2012, FUNDAM APPL CONDUCT
[5]  
Atkins Peter., 2002, Atkins's Physical Chemistry, V7th
[6]   Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications [J].
Aznar-Cervantes, Salvador ;
Roca, Maria I. ;
Martinez, Jose G. ;
Meseguer-Olmo, Luis ;
Cenis, Jose L. ;
Moraleda, Jose M. ;
Otero, Toribio F. .
BIOELECTROCHEMISTRY, 2012, 85 :36-43
[7]   DIRECT INSITU EVIDENCE FOR PROTON ANION-EXCHANGE IN POLYANILINE FILMS BY MEANS OF PROBE BEAM DEFLECTION [J].
BARBERO, C ;
MIRAS, MC ;
HAAS, O ;
KOTZ, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (03) :669-672
[8]   The polymerization of aniline at a solution-gelatin gel interface [J].
Blinova, Natalia V. ;
Trchova, Miroslava ;
Stejskal, Jaroslav .
EUROPEAN POLYMER JOURNAL, 2009, 45 (03) :668-673
[9]   Electrically conductive hydrogel composites made of polyaniline nanoparticles and poly(N-vinyl-2-pyrrolidone) [J].
Dispenza, C ;
Lo Presti, C ;
Belfiore, C ;
Spadaro, G ;
Piazza, S .
POLYMER, 2006, 47 (04) :961-971
[10]   Tunable polyaniline chemical actuators [J].
Gao, JB ;
Sansiñena, JM ;
Wang, HL .
CHEMISTRY OF MATERIALS, 2003, 15 (12) :2411-2418