Lebesgue Space Estimates for Spherical Maximal Functions on Heisenberg Groups

被引:8
作者
Roos, Joris [1 ,2 ,3 ]
Seeger, Andreas [4 ]
Srivastava, Rajula [4 ]
机构
[1] Univ Massachusetts Lowell, Dept Math Sci, Lowell, MA 01854 USA
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Scotland
[3] TheUnivers Edinburgh, Edinburgh EH9 3FD, Scotland
[4] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
OSCILLATORY INTEGRALS; OPERATORS;
D O I
10.1093/imrn/rnab246
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove L-p -> L-q estimates for local maximal operators associated with dilates of codimension two spheres in Heisenberg groups; these are sharp up to two endpoints. The results can be applied to improve currently known bounds on sparse domination for global maximal operators. We also consider lacunary variants and extensions to Metivier groups.
引用
收藏
页码:19222 / 19257
页数:36
相关论文
共 34 条
  • [1] Anderson T, 2021, MATH Z, V297, P1057, DOI 10.1007/s00209-020-02546-0
  • [2] Anderson TC, 2018, Arxiv, DOI arXiv:1801.06981
  • [3] Bagchi S, 2021, NEW YORK J MATH, V27, P631
  • [4] Beltran D., 2019, ANN SCUOLA NORM-SCI
  • [5] SHARP WEIGHTED NORM ESTIMATES BEYOND CALDERON-ZYGMUND THEORY
    Bernicot, Frederic
    Frey, Dorothee
    Petermichl, Stefanie
    [J]. ANALYSIS & PDE, 2016, 9 (05): : 1079 - 1113
  • [6] BOURGAIN J, 1985, CR ACAD SCI I-MATH, V301, P499
  • [7] Carbery A., 1999, J GEOM ANAL, V9, P583, DOI DOI 10.1007/BF02921974
  • [8] Conde-Alonso JM, 2021, Arxiv, DOI arXiv:2009.00336
  • [9] Cowling M., 1981, REND CIRC MAT PALERM, V1, P21
  • [10] L-2 estimates for averaging operators along curves with two-sided k-fold singularities
    Cuccagna, S
    [J]. DUKE MATHEMATICAL JOURNAL, 1997, 89 (02) : 203 - 216