A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain

被引:14
|
作者
Frindel, Carole
Robini, Marc C.
Rousseau, David
机构
[1] Univ Lyon, CREATIS, Lyon, France
[2] CNRS, UMR5220, F-75700 Paris, France
[3] INSERM, U1044, F-75654 Paris 13, France
[4] INSA Lyon, Lyon, France
[5] Univ Lyon 1, F-69622 Villeurbanne, France
[6] INSA Lyon, F-69621 Villeurbanne, France
关键词
Acute stroke; Perfusion weighted MRI; Deconvolution; Spatio-temporal model; Tissue outcome prediction; CEREBRAL-BLOOD-FLOW; HIGH-RESOLUTION MEASUREMENT; TRACER BOLUS PASSAGES; PARAMETER SELECTION; DIFFUSION; REGULARIZATION; MODELS; IMAGES; QUANTIFICATION; RECOVERY;
D O I
10.1016/j.media.2013.10.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an original spatio-temporal deconvolution approach for perfusion-weighted MRI applied to cerebral ischemia. The regularization of the underlying inverse problem is achieved with spatio-temporal priors and the resulting optimization problem is solved by half-quadratic minimization. Our approach offers strong convergence guarantees, including when the spatial priors are non-convex. Moreover, experiments on synthetic data and on real data collected from subjects with ischemic stroke show significant performance improvements over the standard approaches namely, temporal deconvolution based on either truncated singular-value decomposition or l(2)-regularization in terms of various performance measures. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:144 / 160
页数:17
相关论文
共 50 条
  • [1] A Spatio-Temporal Deconvolution Method to Improve Perfusion CT Quantification
    He, Lili
    Orten, Burkay
    Do, Synho
    Karl, W. Clem
    Kambadakone, Avinish
    Sahani, Dushyant V.
    Pien, Homer
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (05) : 1182 - 1191
  • [2] SPATIO-TEMPORAL DECONVOLUTION OF PERFUSION CT DATA IN RECTAL TUMOR PATIENTS
    He, L.
    Orten, B. B.
    Do, S.
    Karl, W. C.
    Kambadakone, A.
    Sahani, D. V.
    Pien, H.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 1231 - +
  • [3] An Unsupervised Spatio-Temporal Regularization for Perfusion MRI Deconvolution in Acute Stroke
    Giacalone, Mathilde
    Frindel, Carole
    Rousseau, David
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 1708 - 1712
  • [4] Control of the 3-D spatio-temporal distribution of air temperature
    Van Brecht, A
    Quanten, S
    Zerihundesta, T
    Van Buggenhout, S
    Berckmans, D
    INTERNATIONAL JOURNAL OF CONTROL, 2005, 78 (02) : 88 - 99
  • [5] Spatio-temporal adaptive 3-D Kalman filter for video
    Kim, J
    Woods, JW
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (03) : 414 - 424
  • [6] 3-D spatio-temporal structures of biofilms in a water channel
    Chen, Chen
    Hou, Shuyu
    Ren, Dacheng
    Ren, Mingming
    Wang, Qi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) : 4461 - 4478
  • [7] A 3-D spatio-temporal simulation model for wireless channels
    Mohasseb, YZ
    Fitz, MP
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2002, 20 (06) : 1193 - 1203
  • [8] Spatio-temporal data model for 3-D spatial process simulation
    Zhang, S.S.
    Zhao, C.H.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2001, 36 (05):
  • [9] Robustness of Spatio-Temporal Regularization in Perfusion MRI Deconvolution: An Application to Acute Ischemic Stroke
    Giacalone, Mathilde
    Frindel, Carole
    Robini, Marc
    Cervenansky, Frederic
    Grenier, Emmanuel
    Rousseau, David
    MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (05) : 1981 - 1990
  • [10] Spatio-temporal post-filtering of 3-D coded video sequences
    Skocir, P
    Marusic, B
    Tasic, J
    MELECON 2000: INFORMATION TECHNOLOGY AND ELECTROTECHNOLOGY FOR THE MEDITERRANEAN COUNTRIES, VOLS 1-3, PROCEEDINGS, 2000, : 474 - 477