On discovering functions in actin filament automata

被引:6
作者
Adamatzky, Andrew [1 ]
机构
[1] Univ West England, Unconvent Comp Lab, Bristol, Avon, England
关键词
actin; computing; automata; CYTOSKELETON; MICROTUBULES; VIBRATIONS; EXCITATION; DYNAMICS;
D O I
10.1098/rsos.181198
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We simulate an actin filament as an automaton network. Every atom takes two or three states and updates its state, in discrete time, depending on a ratio of its neighbours in some selected state. All atoms/automata simultaneously update their states by the same rule. Two state transition rules are considered. In semi-totalistic Game of Life like actin filament automaton atoms take binary states '0' and '1' and update their states depending on a ratio of neighbours in the state '1'. In excitable actin filament automaton atoms take three states: resting, excited and refractory. A resting atom excites if a ratio of its excited neighbours belong to some specified interval; transitions from excited state to refractory state and from refractory state to resting state are unconditional. In computational experiments, we implement mappings of an 8-bit input string to an 8-bit output string via dynamics of perturbation/excitation on actin filament automata. We assign eight domains in an actin filament as I/O ports. To write True to a port, we perturb/excite a certain percentage of the nodes in the domain corresponding to the port. We read outputs at the ports after some time interval. A port is considered to be in a state True if a number of excited nodes in the port's domain exceed a certain threshold. A range of eight-argument Boolean functions is uncovered in a series of computational trials when all possible configurations of eight-elements binary strings were mapped onto excitation outputs of the I/O domains.
引用
收藏
页数:9
相关论文
共 48 条
[1]  
Adamatzky A., 2010, GAME LIFE CELLULAR A, V1
[2]   On the dynamics of excitation and information processing in F-actin: Automaton model [J].
Adamatzky, Andrew .
Complex Systems, 2017, 26 (04) :295-318
[3]   Logical gates in actin monomer [J].
Adamatzky, Andrew .
SCIENTIFIC REPORTS, 2017, 7
[4]  
[Anonymous], P EUR C ART LIF ECAL
[5]   Attosecond physics at the nanoscale [J].
Ciappina, M. F. ;
Perez-Hernandez, J. A. ;
Landsman, A. S. ;
Okell, W. A. ;
Zherebtsov, S. ;
Foerg, B. ;
Schoetz, J. ;
Seiffert, L. ;
Fennel, T. ;
Shaaran, T. ;
Zimmermann, T. ;
Chacon, A. ;
Guichard, R. ;
Zaier, A. ;
Tisch, J. W. G. ;
Marangos, J. P. ;
Witting, T. ;
Braun, A. ;
Maier, S. A. ;
Roso, L. ;
Krueger, M. ;
Hommelhoff, P. ;
Kling, M. F. ;
Krausz, F. ;
Lewenstein, M. .
REPORTS ON PROGRESS IN PHYSICS, 2017, 80 (05)
[6]  
Cifra M, 2007, PIERS ONLINE, V3, P1190, DOI [10.2529/PIERS070220101159, DOI 10.2529/PIERS070220101159]
[7]   Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy [J].
Cingolani, Lorenzo A. ;
Goda, Yukiko .
NATURE REVIEWS NEUROSCIENCE, 2008, 9 (05) :344-356
[8]  
Conway JH, 1970, SCI AM, V223, P4
[9]   The actin cytoskeleton: Integrating form and function at the synapse [J].
Dillon, C ;
Goda, Y .
ANNUAL REVIEW OF NEUROSCIENCE, 2005, 28 :25-55
[10]   Near-Atomic Resolution for One State of F-Actin [J].
Galkin, Vitold E. ;
Orlova, Albina ;
Vos, Matthijn R. ;
Schroeder, Gunnar F. ;
Egelman, Edward H. .
STRUCTURE, 2015, 23 (01) :173-182