Stochastic switching in delay-coupled oscillators

被引:23
作者
D'Huys, Otti [1 ]
Juengling, Thomas [2 ]
Kinzel, Wolfgang [1 ]
机构
[1] Univ Wurzburg, Inst Theoret Phys, D-97074 Wurzburg, Germany
[2] IFISC CSIC UIB, Inst Fis Interdisciplinar & Sistemas Complejos, E-07122 Palma De Mallorca, Spain
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 03期
关键词
LIMIT-CYCLE OSCILLATORS; RECURRENT LOOPS; TIME-DELAY; SYNCHRONIZATION; MULTISTABILITY; RESONANCE; LASERS; NOISE; STABILITY; EQUATIONS;
D O I
10.1103/PhysRevE.90.032918
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A delay is known to induce multistability in periodic systems. Under influence of noise, coupled oscillators can switch between coexistent orbits with different frequencies and different oscillation patterns. For coupled phase oscillators we reduce the delay system to a nondelayed Langevin equation, which allows us to analytically compute the distribution of frequencies and their corresponding residence times. The number of stable periodic orbits scales with the roundtrip delay time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales with the square root of the delay time and is independent of the coupling strength. In contrast, the residence time in the different orbits is mainly determined by the coupling strength and the number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate the effect of a detuning between the oscillators. We demonstrate the generality of our results with delay-coupled FitzHugh-Nagumo oscillators.
引用
收藏
页数:9
相关论文
共 38 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Stability of genetic regulatory networks with time delay [J].
Chen, LN ;
Aihara, K .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (05) :602-608
[3]   Controlling synchrony by delay coupling in networks: From in-phase to splay and cluster states [J].
Choe, Chol-Ung ;
Dahms, Thomas ;
Hoevel, Philipp ;
Schoell, Eckehard .
PHYSICAL REVIEW E, 2010, 81 (02)
[4]   Synchronization properties of network motifs: Influence of coupling delay and symmetry [J].
D'Huys, O. ;
Vicente, R. ;
Erneux, T. ;
Danckaert, J. ;
Fischer, I. .
CHAOS, 2008, 18 (03)
[5]   Amplitude and phase effects on the synchronization of delay-coupled oscillators [J].
D'Huys, O. ;
Vicente, R. ;
Danckaert, J. ;
Fischer, I. .
CHAOS, 2010, 20 (04)
[6]   Order function theory of macroscopic phase-locking in globally and weakly coupled limit-cycle oscillators [J].
Daido, H .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (04) :807-829
[7]   Synchronization in oscillator networks with delayed coupling: A stability criterion [J].
Earl, MG ;
Strogatz, SH .
PHYSICAL REVIEW E, 2003, 67 (03) :4
[8]  
Erneux T., 2009, Applied delay differential equations, V3
[9]   Dynamics, control and information in delay-coupled systems: an overview Introduction [J].
Flunkert, Valentin ;
Fischer, Ingo ;
Schoell, Eckehard .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1999)
[10]   Noise, multistability, and delayed recurrent loops [J].
Foss, J ;
Moss, F ;
Milton, J .
PHYSICAL REVIEW E, 1997, 55 (04) :4536-4543