PI3-kinase regulates survival of chronic lymphocytic leukemia B-cells by preventing caspase-8 activation

被引:26
作者
Plate, JMD [1 ]
机构
[1] Rush Univ, Med Ctr, Div Hematol & Oncol, Dept Med,Sect Med Oncol, Chicago, IL 60612 USA
关键词
leukemia; signal transduction; kinase; apoptosis; caspases;
D O I
10.1080/10428190410001683642
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Studies to investigate signal transduction pathways that support viability and prevent apoptosis of chronic lymphocytic leukemia cells (CLL) were initiated as a result of microarray cDNA analyses which revealed expression of genes whose products regulate cell cycle progression. Immunoblots revealed translation of several genes including caspases, cyclin D1, and the PI3-kinase dependent, survival kinase, Akt. Akt was found to be activated. Inhibition of PI3-kinase with specific inhibitor, LY294002, led to the induction of apoptosis that was caspase 8 dependent, but independent of Akt as LY294002 did not depress a high basal level of Akt activity found in CLL cells. Phosphorylation of Akt was maintained, enzymatic activity undiminished, and phosphorylation of substrates sustained. Caspases, however were activated, PARP cleaved and DNA fragmented. Caspase inhibitors revealed that initiator caspase 8 was required for classic apoptosis when PI3-kinase was inhibited, and specific activity assays demonstrated its early activation. GSK-3beta a kinase regulated via PI3-kinase dependent, down-stream kinases, was responsible for regulating cyclin D1 levels in CLL cells, but neither GSK-3beta nor calpain was responsible for induction of apoptosis, or activation of executioner caspase 3, following LY294002 treatment. PI3-kinase mediated protection against caspase activation in CLL B-cells therefore is not mediated through classic Akt survival pathways. The data further support the hypothesis that signal transducing, membrane associated receptors triggered by extrinsic factors, maintain CLL leukemic B-cell survival in vivo by preventing caspase activation.
引用
收藏
页码:1519 / 1529
页数:11
相关论文
共 52 条
[1]   PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2 [J].
Balendran, A ;
Casamayor, A ;
Deak, M ;
Paterson, A ;
Gaffney, P ;
Currie, R ;
Downes, CP ;
Alessi, DR .
CURRENT BIOLOGY, 1999, 9 (08) :393-404
[2]   Involvement of protein kinase C and phosphatidylinositol 3-kinase pathways in the survival of B-cell chronic lymphocytic leukemia cells [J].
Barragan, M ;
Bellosillo, B ;
Campàs, C ;
Colomer, D ;
Pons, G ;
Gil, J .
BLOOD, 2002, 99 (08) :2969-2976
[3]   Survival of leukemic B cells promoted by engagement of the antigen receptor [J].
Bernal, A ;
Pastore, RD ;
Asgary, Z ;
Keller, SA ;
Cesarman, E ;
Liou, HC ;
Schattner, EJ .
BLOOD, 2001, 98 (10) :3050-3057
[4]   Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression [J].
Bichi, R ;
Shinton, SA ;
Martin, ES ;
Koval, A ;
Calin, GA ;
Cesari, R ;
Russo, G ;
Hardy, RR ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6955-6960
[5]   Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death [J].
Boldin, MP ;
Goncharov, TM ;
Goltsev, YV ;
Wallach, D .
CELL, 1996, 85 (06) :803-815
[6]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[7]   c-FLIPL is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis [J].
Chang, DW ;
Xing, Z ;
Pan, Y ;
Algeciras-Schimnich, A ;
Barnhart, BC ;
Yaish-Ohad, S ;
Peter, ME ;
Yang, XL .
EMBO JOURNAL, 2002, 21 (14) :3704-3714
[8]   Regulation of Akt/PKB activation by tyrosine phosphorylation [J].
Chen, RY ;
Kim, O ;
Yang, JB ;
Sato, K ;
Eisenmann, KM ;
McCarthy, J ;
Chen, HG ;
Qiu, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (34) :31858-31862
[9]   Syk and Bruton's tyrosine kinase are required for B cell antigen receptor-mediated activation of the kinase Aht [J].
Craxton, A ;
Jiang, AM ;
Kurosaki, T ;
Clark, EA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (43) :30644-30650
[10]   INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN-MEDIATED BY PROTEIN-KINASE-B [J].
CROSS, DAE ;
ALESSI, DR ;
COHEN, P ;
ANDJELKOVICH, M ;
HEMMINGS, BA .
NATURE, 1995, 378 (6559) :785-789