Interplay of turbulence and proton-microinstability growth in space plasmas

被引:8
作者
Bandyopadhyay, Riddhi [1 ]
Qudsi, Ramiz A. [2 ]
Gary, S. Peter [3 ]
Matthaeus, William H. [4 ,5 ]
Parashar, Tulasi N. [4 ,5 ]
Maruca, Bennett A. [4 ,5 ]
Roytershteyn, Vadim [3 ]
Chasapis, Alexandros [6 ]
Giles, Barbara L. [7 ]
Gershman, Daniel J. [7 ]
Pollock, Craig J. [8 ]
Russell, Christopher T. [9 ]
Strangeway, Robert J. [9 ]
Torbert, Roy B. [10 ]
Moore, Thomas E. [7 ]
Burch, James L. [11 ]
机构
[1] Dept Astrophys Sci, Princeton, NJ 08544 USA
[2] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA
[3] Space Sci Inst, Boulder, CO 80301 USA
[4] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[5] Bartol Res Inst, Newark, DE 19716 USA
[6] Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO 80303 USA
[7] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[8] Denali Sci, Fairbanks, AK 99709 USA
[9] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[10] Univ New Hampshire, Durham, NH 03824 USA
[11] Southwest Res Inst, San Antonio, TX 78238 USA
基金
美国国家科学基金会;
关键词
SOLAR-WIND;
D O I
10.1063/5.0098625
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Numerous prior studies have shown that as proton beta increases, a narrower range of proton temperature anisotropy values is observed. This effect has often been ascribed to the actions of kinetic microinstabilities because the distribution of observational data aligns with contours of constant instability growth rates in the beta-anisotropy plane. However, the linear Vlasov theory of instabilities assumes a uniform background in which perturbations grow. The established success of linear-microinstability theories suggests that the conditions in regions of extreme temperature anisotropy may remain uniform for a long enough time so that the instabilities have the chance to grow to sufficient amplitude. Turbulence, on the other hand, is intrinsically nonuniform and nonlinear. Thin current sheets and other coherent structures generated in a turbulent plasma may quickly destroy the uniformity. It is, therefore, not a-priori obvious whether the presence of intermittency and coherent structures favors or disfavors instabilities. To address this question, we examined the statistical distribution of growth rates associated with proton temperature-anisotropy driven microinstabilities and local nonlinear time scales in turbulent plasmas. Linear growth rates are, on average, substantially less than the local nonlinear rates. However, at the regions of extreme values of temperature anisotropy, near the "edges " of the populated part of the proton temperature anisotropy-parallel beta plane, the instability growth rates are comparable or faster than the turbulence time scales. These results provide a possible answer to the question as to why the linear theory appears to work in limiting plasma excursions in anisotropy and plasma beta. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:8
相关论文
共 42 条
[1]   Magnetic Fluctuation Power Near Proton Temperature Anisotropy Instability Thresholds in the Solar Wind [J].
Bale, S. D. ;
Kasper, J. C. ;
Howes, G. G. ;
Quataert, E. ;
Salem, C. ;
Sundkvist, D. .
PHYSICAL REVIEW LETTERS, 2009, 103 (21)
[2]   Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence [J].
Bale, SD ;
Kellogg, PJ ;
Mozer, FS ;
Horbury, TS ;
Reme, H .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[3]   The Solar Wind as a Turbulence Laboratory [J].
Bruno, Roberto ;
Carbone, Vincenzo .
LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (02) :7-+
[4]   Magnetospheric Multiscale Overview and Science Objectives [J].
Burch, J. L. ;
Moore, T. E. ;
Torbert, R. B. ;
Giles, B. L. .
SPACE SCIENCE REVIEWS, 2016, 199 (1-4) :5-21
[5]  
Gary S. P., 1993, Theory of Space Plasma Microinstabilities
[6]   Proton temperature anisotropy constraint in the solar wind: ACE observations [J].
Gary, SP ;
Skoug, RM ;
Steinberg, JT ;
Smith, CW .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (14) :2759-2762
[7]   Inhomogeneous kinetic effects related to intermittent magnetic discontinuities [J].
Greco, A. ;
Valentini, F. ;
Servidio, S. ;
Matthaeus, W. H. .
PHYSICAL REVIEW E, 2012, 86 (06)
[8]   EVIDENCE FOR NONLINEAR DEVELOPMENT OF MAGNETOHYDRODYNAMIC SCALE INTERMITTENCY IN THE INNER HELIOSPHERE [J].
Greco, A. ;
Matthaeus, W. H. ;
D'Amicis, R. ;
Servidio, S. ;
Dmitruk, P. .
ASTROPHYSICAL JOURNAL, 2012, 749 (02)
[9]   Spectra of Diffusion, Dispersion, and Dissipation for Kinetic Alfvenic and Compressive Turbulence: Comparison between Kinetic Theory and Measurements from MMS [J].
He, Jiansen ;
Zhu, Xingyu ;
Verscharen, Daniel ;
Duan, Die ;
Zhao, Jinsong ;
Wang, Tieyan .
ASTROPHYSICAL JOURNAL, 2020, 898 (01)
[10]   Direct Measurement of the Dissipation Rate Spectrum around Ion Kinetic Scales in Space Plasma Turbulence [J].
He, Jiansen ;
Duan, Die ;
Wang, Tieyan ;
Zhu, Xingyu ;
Li, Wenya ;
Verscharen, Daniel ;
Wang, Xin ;
Tu, Chuanyi ;
Khotyaintsev, Yuri ;
Le, Guan ;
Burch, Jim .
ASTROPHYSICAL JOURNAL, 2019, 880 (02)