The support vector regression (SVR) approach combined with particle swarm optimization (PSO) for its parameter optimization is proposed to establish a model for prediction of the corrosion rate of 3C steel under five different seawater environment factors, including temperature, dissolved oxygen. salinity, pH value and oxidation-reduction potential. The prediction results strongly support that the generalization ability of SVR model consistently surpasses that of back-propagation neural network (BPNN) by applying identical training and test samples. The absolute percentage error (APE) of 80.43% test samples out of 46 samples does not exceed 1% such that the best prediction result was provided by leave-one-out cross validation (LOOCV) test of SVR. These suggest that SVR may be a promising and practical methodology to conduct a real-time corrosion tracking of steel surrounded by complicated and changeable seawater. (C) 2008 Elsevier Ltd. All rights reserved.