Semilinear Schrodinger flows on hyperbolic spaces: scattering in H1

被引:39
作者
Ionescu, Alexandru D. [1 ]
Staffilani, Gigliola [2 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] MIT, Cambridge, MA 02139 USA
关键词
GLOBAL WELL-POSEDNESS; SYMMETRIC-SPACES; HARMONIC-ANALYSIS; ROUGH SOLUTIONS; EQUATION; MULTIPLIERS; EXISTENCE;
D O I
10.1007/s00208-009-0344-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove global well-posedness and scattering in H-1 for the defocusing nonlinear Schrodinger equations {(i partial derivative(t) + Delta(g))u = u vertical bar u vertical bar(2 sigma); u(0) = phi, on the hyperbolic spaces H-d, d >= 2, for exponents sigma (0, 2/(d - 2)). The main unexpected conclusion is scattering to linear solutions in the case of small exponents s; for comparison, on Euclidean spaces scattering in H-1 is not known for any exponent sigma is an element of (1/d, 2/d] and is known to fail for sigma is an element of (0, 1/d]. Our main ingredients are certain noneuclidean global in time Strichartz estimates and noneuclidean Morawetz inequalities.
引用
收藏
页码:133 / 158
页数:26
相关论文
共 45 条
[21]   Bilinear estimates and applications to 2D NLS [J].
Colliander, JE ;
Delort, JM ;
Kenig, CE ;
Staffilani, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (08) :3307-3325
[22]   KUNZE-STEIN PHENOMENON [J].
COWLING, M .
ANNALS OF MATHEMATICS, 1978, 107 (02) :209-234
[23]  
GINIBRE J, J MATH PURES APPL, V64, P363
[24]   On nonlinear Schrodinger equations [J].
Grillakis, MG .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (9-10) :1827-1844
[26]  
HELGASON S., 2001, GRADUATE STUDIES MAT, V34
[27]  
Helgason S., 2008, Geometric Analysis on Symmetric Spaces, V39
[28]   An endpoint estimate for the Kunze-Stein phenomenon and related maximal operators [J].
Ionescu, AD .
ANNALS OF MATHEMATICS, 2000, 152 (01) :259-275
[29]   Fourier integral operators on noncompact symmetric spaces of real rank one [J].
Ionescu, AD .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 174 (02) :274-300
[30]   Singular integrals on symmetric spaces of real rank one [J].
Ionescu, AD .
DUKE MATHEMATICAL JOURNAL, 2002, 114 (01) :101-122