Semilinear Schrodinger flows on hyperbolic spaces: scattering in H1

被引:39
作者
Ionescu, Alexandru D. [1 ]
Staffilani, Gigliola [2 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] MIT, Cambridge, MA 02139 USA
关键词
GLOBAL WELL-POSEDNESS; SYMMETRIC-SPACES; HARMONIC-ANALYSIS; ROUGH SOLUTIONS; EQUATION; MULTIPLIERS; EXISTENCE;
D O I
10.1007/s00208-009-0344-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove global well-posedness and scattering in H-1 for the defocusing nonlinear Schrodinger equations {(i partial derivative(t) + Delta(g))u = u vertical bar u vertical bar(2 sigma); u(0) = phi, on the hyperbolic spaces H-d, d >= 2, for exponents sigma (0, 2/(d - 2)). The main unexpected conclusion is scattering to linear solutions in the case of small exponents s; for comparison, on Euclidean spaces scattering in H-1 is not known for any exponent sigma is an element of (1/d, 2/d] and is known to fail for sigma is an element of (0, 1/d]. Our main ingredients are certain noneuclidean global in time Strichartz estimates and noneuclidean Morawetz inequalities.
引用
收藏
页码:133 / 158
页数:26
相关论文
共 45 条
[1]   LP FOURIER MULTIPLIERS ON RIEMANNIAN SYMMETRICAL SPACES OF THE NONCOMPACT TYPE [J].
ANKER, JP .
ANNALS OF MATHEMATICS, 1990, 132 (03) :597-628
[2]   Heat kernel and green function estimates on noncompact symmetric spaces [J].
Anker, JP ;
Ji, L .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (06) :1035-1091
[3]  
ANKER JP, 2007, NONLINEAR SCHRODINGE
[4]   The nonlinear Schrodinger equation on hyperbolic space [J].
Banica, V. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (10-12) :1643-1677
[5]  
BANICA V, 2008, SCATTERING NLS EUCLI
[6]   Scattering theory for radial nonlinear Schrodinger equations on hyperbolic space [J].
Banica, Valeria ;
Carles, Remi ;
Staffilani, Gigliola .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 18 (02) :367-399
[7]  
Banica V, 2007, DYNAM PART DIFFER EQ, V4, P335
[9]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[10]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107