A rate independent inelasticity model with smooth transition for unifying low-cycle to high-cycle fatigue life prediction

被引:30
作者
Mozafari, F. [1 ]
Thamburaja, P. [1 ]
Srinivasa, A. R. [2 ]
Moslemi, N. [3 ]
机构
[1] UKM, Dept Mech & Mat Engn, Bangi 43600, Malaysia
[2] TAMU, Dept Mech Engn, College Stn, TX 77843 USA
[3] UTM, Fac Mech Engn, Skudai 81310, Malaysia
关键词
Plasticity modeling; Computational implementation; Experimental investigation; Fatigue; OF-THE-ART; CONSTITUTIVE-EQUATIONS; THERMODYNAMIC ENTROPY; CRACK-PROPAGATION; PHYSICAL MODEL; INTRUSIONS; MECHANISMS; EXTRUSIONS; BEHAVIOR; METALS;
D O I
10.1016/j.ijmecsci.2019.05.017
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A three-dimensional rate independent inelastic constitutive model has been developed to predict the fatigue behavior of metals spanning low to high cycles, based solely on the monotonic stress strain curve and a cyclic test for a few cycles (< 1000). The key to the development of the model is that the "microplastic response" before full yield is accounted for by a new approach to inelastic modeling while retaining a rate independent response. A numerical algorithm based on the one-dimensional version of the constitutive theory has also been implemented into a computer code to model fatigue loading under simple tension/compression i.e. uniaxial loading conditions. The material parameters in the constitutive model were calibrated through fitting the constitutive model to the monotonic stress-strain curve obtained from a simple compression test experiment. By adopting the total inelastic work dissipation (which is related to the configurational entropy created due to damage) as the failure criteria and integrating the rate of entropy generation (under isothermal conditions) over a typical stabilized hysteresis cycle (including the small scale effects due to microplasticity), a close-formed expression for stress-fatigue life prediction is also derived for zero mean stress. Finally, it is shown that the model and numerical algorithm are able to predict the experimental stress-life and strain-life (with and without mean stress) responses quite well.
引用
收藏
页码:325 / 335
页数:11
相关论文
共 50 条
  • [41] Very high-cycle fatigue life prediction of high-strength steel based on machine learning
    Liu, Xiaolong
    Zhang, Siyuan
    Cong, Tao
    Zeng, Fan
    Wang, Xi
    Wang, Wenjing
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2024, 47 (03) : 1024 - 1035
  • [42] Effects of specimen size on fatigue life of metallic materials in high-cycle and very-high-cycle fatigue regimes
    Sun, C.
    Zhang, X.
    Liu, X.
    Hong, Y.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2016, 39 (06) : 770 - 779
  • [43] Low-Cycle Fatigue Life and Fatigue Crack Propagation of Sintered Ag Nanoparticles
    Shioda, Ryutaro
    Kariya, Yoshiharu
    Mizumura, Noritsuka
    Sasaki, Koji
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (02) : 1155 - 1162
  • [44] Application of Differential Entropy in Characterizing the Deformation Inhomogeneity and Life Prediction of Low-Cycle Fatigue of Metals
    Zhang, Mu-Hang
    Shen, Xiao-Hong
    He, Lei
    Zhang, Ke-Shi
    MATERIALS, 2018, 11 (10)
  • [45] Low-cycle fatigue of TiNi shape memory alloy and formulation of fatigue life
    Tobushi, H
    Nakahara, T
    Shimeno, Y
    Hashimoto, T
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2000, 122 (02): : 186 - 191
  • [46] Low-cycle fatigue life prediction of powder metallurgy superalloy considering characteristic parameters of inclusions
    Feng, Yefei
    Zhang, Lu
    Wang, Yuzhuo
    Yu, Zhiwei
    Jiang, Rong
    Zhou, Xiaoming
    Zou, Jinwen
    Wang, Xuqing
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2024, 47 (01) : 20 - 34
  • [47] Numerical damage and life prediction of automotive casting tooling due to low-cycle thermal fatigue
    Toumbas, D.
    Dufaure, N.
    REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 2011, 108 (02): : 109 - 112
  • [49] A modified nonlinear cumulative damage model for combined high and low cycle fatigue life prediction
    Yue, Peng
    Li, He
    Dong, Yan
    Zhang, Jun-Fu
    Zhou, Chang-Yu
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2024, 47 (04) : 1300 - 1311