Direct Air Capture of CO2 Using Solvents

被引:59
作者
Custelcean, Radu [1 ]
机构
[1] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA
关键词
carbon dioxide removal; negative emissions technologies; alkaline base; aqueous solvent; amino acid; AMINO-ACIDS; CARBON CAPTURE; CRYSTALLIZATION; ABSORPTION; KINETICS; ENERGY; SALT;
D O I
10.1146/annurev-chembioeng-092120-023936
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Large-scale deployment of negative emissions technologies (NETs) that permanently remove CO2 from the atmosphere is now considered essential for limiting the global temperature increase to less than 2 degrees C by the end of this century. One promising NET is direct air capture (DAC), a technology that employs engineered chemical processes to remove atmospheric carbon dioxide, potentially at the scale of billions of metric tons per year. This review highlights one of the two main approaches to DAC based on aqueous solvents. The discussion focuses on different aspects of DAC with solvents, starting with the fundamental chemistry that includes the chemical species and reactions involved and the thermodynamics and kinetics of CO2 binding and release. Chemical engineering aspects are also discussed, including air-liquid contactor design, process development, and technoeconomic assessments to estimate the cost of the DAC technologies. Various solvents employed in DAC are reviewed, from aqueous alkaline solutions (NaOH, KOH) to aqueous amines, amino acids, and peptides, along with different solvent regeneration methods, from the traditional thermal swinging to the more exploratory carbonate crystallization with guanidines or electrochemical methods.
引用
收藏
页码:217 / 234
页数:18
相关论文
共 40 条
[1]   A systematic review on CO2 capture with ionic liquids: Current status and future prospects [J].
Aghaie, Mahsa ;
Rezaei, Nima ;
Zendehboudi, Sohrab .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 96 :502-525
[2]   Screening Study of Different Amine-Based Solutions as Sorbents for Direct CO2 Capture from Air [J].
Barzagli, Francesco ;
Giorgi, Claudia ;
Mani, Fabrizio ;
Peruzzini, Maurizio .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (37) :14013-14021
[3]   Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power [J].
Brethome, Flavien M. ;
Williams, Neil J. ;
Seipp, Charles A. ;
Kidder, Michelle K. ;
Custelcean, Radu .
NATURE ENERGY, 2018, 3 (07) :553-559
[4]   Direct air capture of CO2via crystal engineering [J].
Custelcean, Radu .
CHEMICAL SCIENCE, 2021, 12 (38) :12518-12528
[5]   Direct air capture of CO2 with aqueous peptides and crystalline guanidines [J].
Custelcean, Radu ;
Garrabrant, Kathleen A. ;
Agullo, Pierrick ;
Williams, Neil J. .
CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (04)
[6]   Dialing in Direct Air Capture of CO2by Crystal Engineering of Bisiminoguanidines [J].
Custelcean, Radu ;
Williams, Neil J. ;
Wang, Xiaoping ;
Garrabrant, Kathleen A. ;
Martin, Halie J. ;
Kidder, Michelle K. ;
Ivanov, Alexander S. ;
Bryantsev, Vyacheslav S. .
CHEMSUSCHEM, 2020, 13 (23) :6381-6390
[7]   Iminoguanidines: from anion recognition and separation to carbon capture [J].
Custelcean, Radu .
CHEMICAL COMMUNICATIONS, 2020, 56 (71) :10272-10280
[8]   Direct Air Capture of CO2 with Aqueous Amino Acids and Solid Bis-iminoguanidines (BIGs) [J].
Custelcean, Radu ;
Williams, Neil J. ;
Garrabrant, Kathleen A. ;
Agullo, Pierrick ;
Brethome, Flavien M. ;
Martin, Halie J. ;
Kidder, Michelle K. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (51) :23338-23346
[9]   Net-zero emissions energy systems [J].
Davis, Steven J. ;
Lewis, Nathan S. ;
Shaner, Matthew ;
Aggarwal, Sonia ;
Arent, Doug ;
Azevedo, Ines L. ;
Benson, Sally M. ;
Bradley, Thomas ;
Brouwer, Jack ;
Chiang, Yet-Ming ;
Clack, Christopher T. M. ;
Cohen, Armond ;
Doig, Stephen ;
Edmonds, Jae ;
Fennell, Paul ;
Field, Christopher B. ;
Hannegan, Bryan ;
Hodge, Bri-Mathias ;
Hoffert, Martin I. ;
Ingersoll, Eric ;
Jaramillo, Paulina ;
Lackner, Klaus S. ;
Mach, Katharine J. ;
Mastrandrea, Michael ;
Ogden, Joan ;
Peterson, Per F. ;
Sanchez, Daniel L. ;
Sperling, Daniel ;
Stagner, Joseph ;
Trancik, Jessika E. ;
Yang, Chi-Jen ;
Caldeira, Ken .
SCIENCE, 2018, 360 (6396) :1419-+
[10]   Life-cycle assessment of an industrial direct air capture process based on temperature-vacuum swing adsorption [J].
Deutz, Sarah ;
Bardow, Andre .
NATURE ENERGY, 2021, 6 (02) :203-213