The k-distinct language: Parameterized automata constructions

被引:0
作者
Ben-Basat, Ran [1 ]
Gabizon, Ariel [1 ]
Zehavi, Meirav [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
关键词
Parameterized complexity; Automata theory; k-Path; r-Dimensional k-matching; DETERMINISTIC ALGORITHMS; PACKING; COMPLEXITY; PATHS;
D O I
10.1016/j.tcs.2016.01.029
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we pioneer a study of parameterized automata constructions for languages related to the design of parameterized algorithms. We focus on the k-DISTINCT language L-k(Sigma) subset of Sigma(k), defined as the set of words of length k over an alphabet Sigma whose symbols are all distinct. This language is implicitly related to several breakthrough techniques developed during the last two decades, to design parameterized algorithms for fundamental problems such as k-PATH and r-DIMENSIONAL k-MATCHING. Building upon the color coding, divide-and-color and narrow sieves techniques, we obtain the following automata constructions for L-k(Sigma). We develop non-deterministic automata (NFAs) of sizes 4(k+0(k)).n(0(1)) and (2e)(k+0(k)).n(0(1)), where the latter satisfies a 'bounded ambiguity' property relevant to approximate counting, as well as a non-deterministic xor automaton (NXA) of size 2(k).n(0(1)), where n = vertical bar Sigma vertical bar We show that our constructions can be used to develop both deterministic and randomized algorithms for k-PATH, r-DIMENSIONAL k-MATCHING and MODULE MOTIF in a natural manner, considering also their approximate counting variants. Our framework is modular and consists of two parts: designing an automaton for k-DISTINCT, and designing a problem specific automaton, as well as an algorithm for deciding whether the intersection automaton's language is empty, or for counting the number of accepting paths in it. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 47 条
  • [11] Improved deterministic algorithms for weighted matching and packing problems
    Chen, Jianer
    Feng, Qilong
    Liu, Yang
    Lu, Songjian
    Wang, Jianxin
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (23) : 2503 - 2512
  • [12] RANDOMIZED DIVIDE-AND-CONQUER: IMPROVED PATH, MATCHING, AND PACKING ALGORITHMS
    Chen, Jianer
    Kneis, Joachim
    Lu, Songjian
    Moelle, Daniel
    Richter, Stefan
    Rossmanith, Peter
    Sze, Sing-Hoi
    Zhang, Fenghui
    [J]. SIAM JOURNAL ON COMPUTING, 2009, 38 (06) : 2526 - 2547
  • [13] Using nondeterminism to design efficient deterministic algorithms
    Chen, JN
    Friesen, DK
    Jia, WJ
    Kanj, IA
    [J]. ALGORITHMICA, 2004, 40 (02) : 83 - 97
  • [14] Chen S., 2013, CORR
  • [15] Dijkstra EW., 1959, NUMER MATH, V1, P269, DOI 10.1007/BF01386390
  • [16] Downey R.G., 1999, MG COMP SCI
  • [17] Downey R.G., TECHNIQUES EXP UNPUB
  • [18] Faster fixed-parameter tractable algorithms for matching and packing problems
    Fellows, M. R.
    Knauer, C.
    Nishimura, N.
    Ragde, P.
    Rosamond, F.
    Stege, U.
    Thilikos, D. M.
    Whitesides, S.
    [J]. ALGORITHMICA, 2008, 52 (02) : 167 - 176
  • [19] The parameterized complexity of counting problems
    Flum, J
    Grohe, M
    [J]. SIAM JOURNAL ON COMPUTING, 2004, 33 (04) : 892 - 922
  • [20] Fomin F., 2014, SODA, P142