Fake news detection on social media using a natural language inference approach

被引:25
|
作者
Sadeghi, Fariba [1 ]
Bidgoly, Amir Jalaly [1 ]
Amirkhani, Hossein [1 ]
机构
[1] Univ Qom, Qom 3716146611, Iran
关键词
Fake news detection; Natural language inference; Social media; Content features;
D O I
10.1007/s11042-022-12428-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fake news detection is a challenging problem in online social media, with considerable social and political impacts. Several methods have already been proposed for the automatic detection of fake news, which are often based on the statistical features of the content or context of news. In this paper, we propose a novel fake news detection method based on Natural Language Inference (NLI) approach. Instead of using only statistical features of the content or context of the news, the proposed method exploits a human-like approach, which is based on inferring veracity using a set of reliable news. In this method, the related and similar news published in reputable news sources are used as auxiliary knowledge to infer the veracity of a given news item. We also collect and publish the first inference-based fake news detection dataset, called FNID, in two formats: the two-class version (FNID-FakeNewsNet) and the six-class version (FNID-LIAR). We use the NLI approach to boost several classical and deep machine learning models, including Decision Tree, Naive Bayes, Random Forest, Logistic Regression, k-Nearest Neighbors, Support Vector Machine, BiGRU, and BiLSTM along with different word embedding methods including Word2vec, GloVe, fastText, and BERT. The experiments show that the proposed method achieves 85.58% and 41.31% accuracies in the FNID-FakeNewsNet and FNID-LIAR datasets, respectively, which are 10.44% and 13.19% respective absolute improvements.
引用
收藏
页码:33801 / 33821
页数:21
相关论文
共 50 条
  • [41] A novel hybrid multi-thread metaheuristic approach for fake news detection in social media
    Yildirim, Gungor
    APPLIED INTELLIGENCE, 2023, 53 (09) : 11182 - 11202
  • [42] FakeBERT: Fake news detection in social media with a BERT-based deep learning approach
    Rohit Kumar Kaliyar
    Anurag Goswami
    Pratik Narang
    Multimedia Tools and Applications, 2021, 80 : 11765 - 11788
  • [43] FakeBERT: Fake news detection in social media with a BERT-based deep learning approach
    Kaliyar, Rohit Kumar
    Goswami, Anurag
    Narang, Pratik
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (08) : 11765 - 11788
  • [44] A Hybrid Linguistic and Knowledge-Based Analysis Approach for Fake News Detection on Social Media
    Seddari, Noureddine
    Derhab, Abdelouahid
    Belaoued, Mohamed
    Halboob, Waleed
    Al-Muhtadi, Jalal
    Bouras, Abdelghani
    IEEE ACCESS, 2022, 10 : 62097 - 62109
  • [45] A Comprehensive Survey on Automatic Detection of Fake News Using Natural Language Processing: Challenges and Limitations
    Saleh, Alhadi Omran
    Karaoglan, Kursat Mustafa
    Cakmak, Muhammet
    8th International Artificial Intelligence and Data Processing Symposium, IDAP 2024, 2024,
  • [46] Detecting Fake News in Social Media Using Voting Classifier
    Elsaeed, Eman
    Ouda, Osama
    Elmogy, Mohammed M.
    Atwan, Ahmed
    El-Daydamony, Eman
    IEEE ACCESS, 2021, 9 : 161909 - 161925
  • [47] Flagging fake news on social media: An experimental study of media consumers' identification of fake news
    Gaozhao, Dongfang
    GOVERNMENT INFORMATION QUARTERLY, 2021, 38 (03)
  • [48] FNED: A Deep Network for Fake News Early Detection on Social Media
    Liu, Yang
    Wu, Yi-Fang Brook
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2020, 38 (03)
  • [49] Evaluating the effectiveness of publishers' features in fake news detection on social media
    Jarrahi, Ali
    Safari, Leila
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (02) : 2913 - 2939
  • [50] Fake News Detection on Social Media via Implicit Crowd Signals
    Souza Freire, Paulo Marcio
    Goldschmidt, Ronaldo Ribeiro
    WEBMEDIA 2019: PROCEEDINGS OF THE 25TH BRAZILLIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB, 2019, : 521 - 524