Darboux integrability for 3D Lotka-Volterra systems

被引:52
作者
Cairó, L
Llibre, J
机构
[1] Univ Orleans, Dept Math MAPMO, UMR 6628, F-45067 Orleans 2, France
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 12期
关键词
D O I
10.1088/0305-4470/33/12/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe the improved Darboux theory of integrability for polynomial ordinary differential equations in three dimensions. Using this theory and computer algebra, we study the existence of first integrals for the three-dimensional Lotka-Volterra systems. Only working up to degree two with the invariant algebraic surfaces and the exponential factors, we find the major part of the known first integrals for such systems, and in addition we find three new classes of integrability. The method used is of general interest and can be applied to any polynomial ordinary differential equations in arbitrary dimension.
引用
收藏
页码:2395 / 2406
页数:12
相关论文
共 33 条