Automatic Deep-Learning Segmentation of Epicardial Adipose Tissue from Low-Dose Chest CT and Prognosis Impact on COVID-19

被引:7
作者
Bartoli, Axel [1 ,2 ]
Fournel, Joris [2 ]
Ait-Yahia, Lea [1 ]
Cadour, Farah [1 ,2 ]
Tradi, Farouk [1 ]
Ghattas, Badih [3 ]
Cortaredona, Sebastien [4 ,5 ]
Million, Matthieu [4 ,6 ]
Lasbleiz, Adele [7 ,8 ]
Dutour, Anne [7 ,8 ]
Gaborit, Benedicte [7 ,8 ]
Jacquier, Alexis [1 ,2 ]
机构
[1] Hop la TIMONE, AP HM, Dept Radiol, F-13005 Marseille, France
[2] Aix Marseille Univ, CRMBM UMR CNRS 7339, 27 Blvd Jean Moulin, F-13005 Marseille, France
[3] Aix Marseille Univ, Luminy Fac Sci, I2M UMR CNRS 7373, 163 Ave Luminy,Case 901, F-13009 Marseille, France
[4] IHU Mediterranee Infect, 19-21 Blvd Jean Moulin, F-13005 Marseille, France
[5] Aix Marseille Univ, IRD, SSA, VITROME, F-13005 Marseille, France
[6] Aix Marseille Univ, AP HM, IRD, MEPHI, F-13005 Marseille, France
[7] Aix Marseille Univ, INSERM, INRAE, C2VN, 27 Blvd Jean Moulin, F-13005 Marseille, France
[8] AP HM, Pole ENDO, Dept Endocrinol Metab Dis & Nutr, F-13915 Marseille, France
关键词
adipose tissue; thoracic imaging; artificial intelligence; deep-learning; COVID-19; FAT; QUANTIFICATION; ASSOCIATION; CALCIUM; DISEASE; VOLUME;
D O I
10.3390/cells11061034
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: To develop a deep-learning (DL) pipeline that allowed an automated segmentation of epicardial adipose tissue (EAT) from low-dose computed tomography (LDCT) and investigate the link between EAT and COVID-19 clinical outcomes. Methods: This monocentric retrospective study included 353 patients: 95 for training, 20 for testing, and 238 for prognosis evaluation. EAT segmentation was obtained after thresholding on a manually segmented pericardial volume. The model was evaluated with Dice coefficient (DSC), inter-and intraobserver reproducibility, and clinical measures. Uni-and multi-variate analyzes were conducted to assess the prognosis value of the EAT volume, EAT extent, and lung lesion extent on clinical outcomes, including hospitalization, oxygen therapy, intensive care unit admission and death. Results: The mean DSC for EAT volumes was 0.85 +/- 0.05. For EAT volume, the mean absolute error was 11.7 +/- 8.1 cm(3) with a non-significant bias of -4.0 +/- 13.9 cm(3) and a correlation of 0.963 with the manual measures (p < 0.01). The multivariate model providing the higher AUC to predict adverse outcome include both EAT extent and lung lesion extent (AUC = 0.805). Conclusions: A DL algorithm was developed and evaluated to obtain reproducible and precise EAT segmentation on LDCT. EAT extent in association with lung lesion extent was associated with adverse clinical outcomes with an AUC = 0.805.
引用
收藏
页数:14
相关论文
共 39 条
[1]   Epicardial adipose tissue, inflammatory biomarkers and COVID-19: Is there a possible relationship? [J].
Abrishami, Alireza ;
Eslami, Vahid ;
Baharvand, Zahra ;
Khalili, Nastaran ;
Saghamanesh, Somayeh ;
Zarei, Ehsan ;
Sanei-Taheri, Morteza .
INTERNATIONAL IMMUNOPHARMACOLOGY, 2021, 90
[2]   Epicardial Fat: Definition, Measurements and Systematic Review of Main Outcomes [J].
Bertaso, Angela Gallina ;
Bertol, Daniela ;
Duncan, Bruce Bartholow ;
Foppa, Murilo .
ARQUIVOS BRASILEIROS DE CARDIOLOGIA, 2013, 101 (01) :E18-E28
[3]   Pericardial fat is associated with carotid stiffness in the Multi-Ethnic Study of Atherosclerosis [J].
Brinkley, T. E. ;
Hsu, F. -C. ;
Carr, J. J. ;
Hundley, W. G. ;
Bluemke, D. A. ;
Polak, J. F. ;
Ding, J. .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2011, 21 (05) :332-338
[4]   Fully Automated CT Quantification of Epicardial Adipose Tissue by Deep Learning: A Multicenter Study [J].
Commandeur, Frederic ;
Goeller, Markus ;
Razipour, Aryabod ;
Cadet, Sebastien ;
Hell, Michaela M. ;
Kwiecinski, Jacek ;
Chen, Xi ;
Chang, Hyuk-Jae ;
Marwan, Mohamed ;
Achenbach, Stephan ;
Berman, Daniel S. ;
Slomka, Piotr J. ;
Tamarappoo, Balaji K. ;
Dey, Damini .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2019, 1 (06)
[5]   Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue From Non-Contrast CT [J].
Commandeur, Frederic ;
Goeller, Markus ;
Betancur, Julian ;
Cadet, Sebastien ;
Doris, Mhairi ;
Chen, Xi ;
Berman, Daniel S. ;
Slomka, Piotr J. ;
Tamarappoo, Balaji K. ;
Dey, Damini .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (08) :1835-1846
[6]   Epicardial adipose tissue characteristics, obesity and clinical outcomes in COVID-19: A post-hoc analysis of a prospective cohort study [J].
Conte, Caterina ;
Esposito, Antonio ;
De Lorenzo, Rebecca ;
Di Filippo, Luigi ;
Palmisano, Anna ;
Vignale, Davide ;
Leone, Riccardo ;
Nicoletti, Valeria ;
Ruggeri, Annalisa ;
Gallone, Guglielmo ;
Secchi, Antonio ;
Bosi, Emanuele ;
Tresoldi, Moreno ;
Castagna, Antonella ;
Landoni, Giovanni ;
Zangrillo, Alberto ;
De Cobelli, Francesco ;
Ciceri, Fabio ;
Camici, Paolo ;
Rovere-Querini, Patrizia .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2021, 31 (07) :2156-2164
[7]  
Coppini Giuseppe, 2010, Open Med Inform J, V4, P126, DOI 10.2174/1874431101004010126
[8]   Computer-aided non-contrast CT-based quantification of pericardial and thoracic fat and their associations with coronary calcium and metabolic syndrome [J].
Dey, Damini ;
Wong, Nathan D. ;
Tamarappoo, Balaji ;
Nakazato, Ryo ;
Gransar, Heidi ;
Cheng, Victor Y. ;
Ramesh, Amit ;
Kakadiaris, Ioannis ;
Germano, Guido ;
Slomka, Piotr J. ;
Berman, Daniel S. .
ATHEROSCLEROSIS, 2010, 209 (01) :136-141
[9]   Automated pericardium delineation and epicardial fat volume quantification from noncontrast CT [J].
Ding, Xiaowei ;
Terzopoulos, Demetri ;
Diaz-Zamudio, Mariana ;
Berman, Daniel S. ;
Slomka, Piotr J. ;
Dey, Damini .
MEDICAL PHYSICS, 2015, 42 (09) :5015-5026
[10]   Epicardial and pericoronary adipose tissue in severe COVID-19 infection [J].
Duyuler, Pinar Turker ;
Duyuler, Serkan ;
Demirtas, Bekir ;
Cayhan, Velihan .
ACTA CARDIOLOGICA, 2023, 78 (04) :451-458