Theoretical Formulation of a Time-Domain Finite Element Method for Nonlinear Magnetic Problems in Three Dimensions

被引:18
作者
Yan, Su [1 ,2 ]
Jin, Jian-Ming [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Ctr Computat Electromagnet, Urbana, IL 61801 USA
[2] Univ Elect Sci & Technol China, Dept Microwave Engn, Chengdu 610054, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
ABSORBING BOUNDARY-CONDITIONS; HYSTERESIS MODELS; PREISACH MODEL; FIELD ANALYSIS; VECTOR; IMPLEMENTATION; ALGORITHM;
D O I
10.2528/PIER15091005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, a numerical solution of nonlinear ferromagnetic problems is formulated using the three-dimensional time-domain finite element method (TDFEM) combined with the inverse Jiles-Atherton (J-A) vector hysteresis model. After a brief introduction of the J-A constitutive model, the second-order nonlinear partial differential equation (PDE) is constructed through the magnetic vector potential in the time domain, which is then discretized by employing the Newmark-beta scheme, and solved by applying the Newton-Raphson method. Different Newton-Raphson schemes are constructed and compared. The capability of the proposed methods is demonstrated by several numerical examples including the simulation of the physical demagnetization process, the prediction of the magnetic remanence in the ferromagnetic material, and the generation of higher-order harmonics.
引用
收藏
页码:33 / 55
页数:23
相关论文
共 48 条
[1]   Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics [J].
Alleon, G ;
Benzi, M ;
Giraud, L .
NUMERICAL ALGORITHMS, 1997, 16 (01) :1-15
[2]   A simple vector generalization of the Jiles-Atherton model of hysteresis [J].
Bergqvist, AJ .
IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (05) :4213-4215
[3]   DYNAMIC GENERALIZATION OF THE SCALAR PREISACH MODEL OF HYSTERESIS [J].
BERTOTTI, G .
IEEE TRANSACTIONS ON MAGNETICS, 1992, 28 (05) :2599-2601
[4]   Iron losses in electrical machines: Influence of different material models [J].
Bottauscio, O ;
Canova, A ;
Chiampi, M ;
Repetto, M .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) :805-808
[5]  
Carpentieri B., 2000, TRPA0004 CERFACS
[6]  
Chikazumi S., 1997, PHYS FERROMAGNETISM
[7]  
DELVECCHIO RM, 1980, IEEE T MAGN, V16, P809, DOI 10.1109/TMAG.1980.1060680
[8]  
Dupre L., 2003, INT COMPUMAG SOC NEW, V10, P4
[9]   Modeling of electromagnetic phenomena in soft magnetic materials under unidirectional time periodic flux excitations [J].
Dupré, LR ;
Bottauscio, O ;
Chiampi, M ;
Repetto, M ;
Melkebeek, JAA .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) :4171-4184
[10]  
Dupre LR, 1998, INT J NUMER METH ENG, V42, P1005, DOI 10.1002/(SICI)1097-0207(19980730)42:6<1005::AID-NME396>3.0.CO