Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi

被引:565
作者
Fortin, Jean-Philippe [1 ]
Triche, Timothy J., Jr. [2 ]
Hansen, Kasper D. [1 ,3 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
[2] USC, Keck Sch Med, Jane Anne Nohl Div Hematol, Los Angeles, CA 90033 USA
[3] Johns Hopkins Sch Med, McKusick Nathans Inst Genet Med, Baltimore, MD 21205 USA
基金
美国国家卫生研究院;
关键词
DNA METHYLATION; CELLULAR HETEROGENEITY; BIOCONDUCTOR;
D O I
10.1093/bioinformatics/btw691
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The minfi package is widely used for analyzing Illumina DNA methylation array data. Here we describe modifications to the minfi package required to support the HumanMethylationEPIC ('EPIC') array from Illumina. We discuss methods for the joint analysis and normalization of data from the HumanMethylation450 ('450k') and EPIC platforms. We introduce the single-sample Noob (ssNoob) method, a normalization procedure suitable for incremental preprocessing of individual methylation arrays and conclude that this method should be used when integrating data from multiple generations of Infinium methylation arrays. We show how to use reference 450k datasets to estimate cell type composition of samples on EPIC arrays. The cumulative effect of these updates is to ensure that minfi provides the tools to best integrate existing and forthcoming Illuminamethylation array data.
引用
收藏
页码:558 / 560
页数:3
相关论文
共 15 条
[1]   Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays [J].
Aryee, Martin J. ;
Jaffe, Andrew E. ;
Corrada-Bravo, Hector ;
Ladd-Acosta, Christine ;
Feinberg, Andrew P. ;
Hansen, Kasper D. ;
Irizarry, Rafael A. .
BIOINFORMATICS, 2014, 30 (10) :1363-1369
[2]   DNA methylation of cord blood cell types: Applications for mixed cell birth studies [J].
Bakulski, Kelly M. ;
Feinberg, Jason I. ;
Andrews, Shan V. ;
Yang, Jack ;
Brown, Shannon ;
McKenney, Stephanie L. ;
Witter, Frank ;
Walston, Jeremy ;
Feinberg, Andrew P. ;
Fallin, M. Daniele .
EPIGENETICS, 2016, 11 (05) :354-362
[3]   High density DNA methylation array with single CpG site resolution [J].
Bibikova, Marina ;
Barnes, Bret ;
Tsan, Chan ;
Ho, Vincent ;
Klotzle, Brandy ;
Le, Jennie M. ;
Delano, David ;
Zhang, Lu ;
Schroth, Gary P. ;
Gunderson, Kevin L. ;
Fan, Jian-Bing ;
Shen, Richard .
GENOMICS, 2011, 98 (04) :288-295
[4]   Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data [J].
Fortin, Jean-Philippe ;
Hansen, Kasper D. .
GENOME BIOLOGY, 2015, 16
[5]   Functional normalization of 450k methylation array data improves replication in large cancer studies [J].
Fortin, Jean-Philippe ;
Labbe, Aurelie ;
Lemire, Mathieu ;
Zanke, Brent W. ;
Hudson, Thomas J. ;
Fertig, Elana J. ;
Greenwood, Celia M. T. ;
Hansen, Kasper D. apy .
GENOME BIOLOGY, 2014, 15 (12)
[6]  
Fortin Jean-Philippe, 2014, F1000Res, V3, P175, DOI 10.12688/f1000research.4680.1
[7]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)
[8]   A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression [J].
Guintivano, Jerry ;
Aryee, Martin J. ;
Kaminsky, Zachary A. .
EPIGENETICS, 2013, 8 (03) :290-302
[9]   DNA methylation arrays as surrogate measures of cell mixture distribution [J].
Houseman, Eugene Andres ;
Accomando, William P. ;
Koestler, Devin C. ;
Christensen, Brock C. ;
Marsit, Carmen J. ;
Nelson, Heather H. ;
Wiencke, John K. ;
Kelsey, Karl T. .
BMC BIOINFORMATICS, 2012, 13
[10]  
Huber W, 2015, NAT METHODS, V12, P115, DOI [10.1038/nmeth.3252, 10.1038/NMETH.3252]