A characterization of dual quermassintegrals and the roots of dual Steiner polynomials

被引:7
作者
Alonso-Gutierrez, David [1 ]
Henk, Martin [2 ]
Hernandez Cifre, Maria A. [3 ]
机构
[1] Univ Zaragoza, Dept Matemat, C Pedro Cerbuna 12, E-50009 Zaragoza, Spain
[2] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[3] Univ Murcia, Dept Matemat, Campus Espinardo, E-30100 Murcia, Spain
关键词
Dual quermassintegrals; Dual Steiner polynomials; Shephard's problem; Moment problem; Location of roots; BUSEMANN-PETTY PROBLEM; BRUNN-MINKOWSKI THEORY; FIREY THEORY; AFFINE; SETS;
D O I
10.1016/j.aim.2018.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m >= 1, (r(0) = 0, r(1), . . . , r(m) ) be a tuple of distinct real numbers and n >= 2. We provide a characterization of those tuples (omega(0), omega(1), . . . , omega(m)) of real numbers such that there exist n-dimensional star bodies K, L with (W) over tilde (rj) (K, L) = omega(j), j = 0, . . . , m, where (W) over tilde (r) (K,L) denotes the r-th dual (relative) quermassintegral of K and L. This may be regarded as an analogue within the dual Brunn-Minkowski theory of Shephard's classification of quermassintegrals of two convex bodies. It turns out that the characterization of dual quermassintegrals is related to the moment problem, and based on this relation, we also derive new determinantal inequalities among the dual quermassintegrals. Moreover, this characterization will be the key tool in order to investigate structural properties of the set of roots of dual Steiner polynomials of star bodies. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:565 / 588
页数:24
相关论文
共 29 条
[1]  
[Anonymous], 1977, TRANSLATIONS MATH MO
[2]  
[Anonymous], 2017, GRADUATE TEXTS MATH
[3]  
[Anonymous], 1966, MATH SURVEYS
[4]   The isoperimetrix in the dual Brunn-Minkowski theory [J].
Bernig, Andreas .
ADVANCES IN MATHEMATICS, 2014, 254 :1-14
[5]  
Boroczky K., 2018, J DIFFERENTIAL GEOM
[6]  
Burago Y. D., 1988, GEOMETRIC INEQUALITI
[7]   Characterizing the Dual Mixed Volume Via Additive Functionals [J].
Dulio, Paolo ;
Gardner, Richard J. ;
Peri, Carla .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (01) :69-91
[8]  
Firey W.J., 1962, Math. Scand., V10, P17
[9]   The dual Brunn-Minkowski theory for bounded borel sets: Dual affine quermassintegrals and inequalities [J].
Gardner, R. J. .
ADVANCES IN MATHEMATICS, 2007, 216 (01) :358-386
[10]  
Gardner RJ, 2014, J DIFFER GEOM, V97, P427