Abelian subgroups of Out (Fn)

被引:16
作者
Feighn, Mark [1 ]
Handel, Michael
机构
[1] Rutgers State Univ, Dept Math, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
FIXED-POINTS; AUTOMORPHISMS; DYNAMICS; OUT(F-N);
D O I
10.2140/gt.2009.13.1657
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify abelian subgroups of Out (F-n) up to finite index in an algorithmic and computationally friendly way. A process called disintegration is used to canonically decompose a single rotationless element phi into a composition of finitely many elements and then these elements are used to generate an abelian subgroup A(phi) that contains phi. The main theorem is that up to finite index every abelian subgroup is realized by this construction. As an application we give an explicit description, in terms of relative train track maps and up to finite index, of all maximal rank abelian subgroups of Out(F-n) and of IA(n).
引用
收藏
页码:1657 / 1727
页数:71
相关论文
共 15 条
[1]  
Bass H., 1994, MATH LEGACY WILHELM, P45
[2]   The Tits alternative for out(Fn) I:: Dynamics of exponentially-growing automorphisms [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
ANNALS OF MATHEMATICS, 2000, 151 (02) :517-623
[3]   TRAIN TRACKS AND AUTOMORPHISMS OF FREE GROUPS [J].
BESTVINA, M ;
HANDEL, M .
ANNALS OF MATHEMATICS, 1992, 135 (01) :1-51
[4]   Solvable subgroups of Out(Fn) are virtually Abelian [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
GEOMETRIAE DEDICATA, 2004, 104 (01) :71-96
[5]   AUTOMORPHISMS OF FREE GROUPS HAVE FINITELY GENERATED FIXED-POINT SETS [J].
COOPER, D .
JOURNAL OF ALGEBRA, 1987, 111 (02) :453-456
[6]  
Culler Cul84 Marc, 1984, Contemp. Math., V33, P197, DOI [10.1090/conm/033/767107, DOI 10.1090/CONM/033/767107]
[7]   MODULI OF GRAPHS AND AUTOMORPHISMS OF FREE GROUPS [J].
CULLER, M ;
VOGTMANN, K .
INVENTIONES MATHEMATICAE, 1986, 84 (01) :91-119
[8]  
Franks J, 2007, J MOD DYNAM, V1, P443
[9]   Fixed points of abelian actions on S2 [J].
Franks, John ;
Handel, Michael ;
Parwani, Kamlesh .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :1557-1581
[10]   An index for counting fixed points of automorphisms of free groups [J].
Gaboriau, D ;
Jaeger, A ;
Levitt, G ;
Lustig, M .
DUKE MATHEMATICAL JOURNAL, 1998, 93 (03) :425-452