SPARSE REPRESENTATION-BASED APPROACH FOR UNSUPERVISED FEATURE SELECTION

被引:3
作者
Su, Ya-Ru [1 ]
Li, Chuan-Xi [2 ]
Wang, Ru-Jing [3 ,4 ]
Chen, Peng [4 ]
机构
[1] Dept Fujian Prov Publ Secur, Forens Sci Div, Fuzhou 361003, Peoples R China
[2] Chinese Acad Sci, Natl Sci Lib, Beijing 100190, Peoples R China
[3] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei, Anhui, Peoples R China
[4] Chinese Acad Sci, Inst Intelligent Machines, Hefei 230027, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised; feature selection; sparse representation; MOTION SEGMENTATION; SHRINKAGE; ALGORITHM;
D O I
10.1142/S0218001414500062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dimension reduction methods including feature selection and feature extraction have played an important role in data mining and pattern recognition. In this study, we propose a novel unsupervised feature selection approach based on sparse representation theory, namely Sparsity Score (SS). Due to the sparse representation procedure, SS not only owns the global property of Variance Score (VS) and the local property of Laplacian Score (LS), but also possesses the discriminating nature. Experimental results, based on three well-known face datasets (Yale, ORL and CMU PIE), reveal that SS performs well in the evaluation of the feature significance, and it significantly outperforms VS and LS.
引用
收藏
页数:19
相关论文
共 50 条
[21]   Sparse and Flexible Projections for Unsupervised Feature Selection [J].
Wang, Rong ;
Zhang, Canyu ;
Bian, Jintang ;
Wang, Zheng ;
Nie, Feiping ;
Li, Xuelong .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) :6362-6375
[22]   UDSFS: Unsupervised deep sparse feature selection [J].
Cong, Yang ;
Wang, Shuai ;
Fan, Baojie ;
Yang, Yunsheng ;
Yu, Haibin .
NEUROCOMPUTING, 2016, 196 :150-158
[23]   An adaptive kernel sparse representation-based classification [J].
Xuejun Wang ;
Wenjian Wang ;
Changqian Men .
International Journal of Machine Learning and Cybernetics, 2020, 11 :2209-2219
[24]   An adaptive kernel sparse representation-based classification [J].
Wang, Xuejun ;
Wang, Wenjian ;
Men, Changqian .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (10) :2209-2219
[25]   Feature Mutual Representation-Based Graph Domain Adaptive Network for Unsupervised Hyperspectral Change Detection [J].
Qu, Jiahui ;
Zhao, Jingyu ;
Dong, Wenqian ;
Xiao, Song ;
Li, Yunsong ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-14
[26]   Sparse representation-based human detection: a scale-embedded dictionary approach [J].
G. Krishna Vinay ;
S. M. Haque ;
R. Venkatesh Babu ;
K. R. Ramakrishnan .
Signal, Image and Video Processing, 2016, 10 :585-592
[27]   Sparse representation-based human detection: a scale-embedded dictionary approach [J].
Vinay, G. Krishna ;
Haque, S. M. ;
Babu, R. Venkatesh ;
Ramakrishnan, K. R. .
SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (03) :585-592
[28]   Remote Sensing Scene Classification Using Sparse Representation-Based Framework With Deep Feature Fusion [J].
Mei, Shaohui ;
Yan, Keli ;
Ma, Mingyang ;
Chen, Xiaoning ;
Zhang, Shun ;
Du, Qian .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :5867-5878
[29]   Unsupervised feature selection guided by orthogonal representation of feature space [J].
Jahani, Mahsa Samareh ;
Aghamollaei, Gholamreza ;
Eftekhari, Mahdi ;
Saberi-Movahed, Farid .
NEUROCOMPUTING, 2023, 516 :61-76
[30]   Discriminative sparse subspace learning and its application to unsupervised feature selection [J].
Zhou, Nan ;
Cheng, Hong ;
Pedrycz, Witold ;
Zhang, Yong ;
Liu, Huaping .
ISA TRANSACTIONS, 2016, 61 :104-118