A convergent decomposition method for box-constrained optimization problems

被引:6
作者
Cassioli, Andrea [1 ]
Sciandrone, Marco [1 ]
机构
[1] Univ Florence, Dipartimento Sistemi & Informat, Florence, Italy
关键词
Decomposition methods; Gauss-Southwell method; Global convergence; SUPPORT VECTOR MACHINES; DESCENT METHOD; MINIMIZATION; ALGORITHM;
D O I
10.1007/s11590-009-0119-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work we consider the problem of minimizing a continuously differentiable function over a feasible set defined by box constraints. We present a decomposition method based on the solution of a sequence of subproblems. In particular, we state conditions on the rule for selecting the subproblem variables sufficient to ensure the global convergence of the generated sequence without convexity assumptions. The conditions require to select suitable variables (related to the violation of the optimality conditions) to guarantee theoretical convergence properties, and leave the degree of freedom of selecting any other group of variables to accelerate the convergence.
引用
收藏
页码:397 / 409
页数:13
相关论文
共 14 条
  • [1] [Anonymous], 2002, Handbook of Applied Optimization
  • [2] Bertsekas D. P., 1999, Nonlinear programming
  • [3] A truncated Newton algorithm for large scale box constrained optimization
    Facchinei, F
    Lucidi, S
    Palagi, L
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2002, 12 (04) : 1100 - 1125
  • [4] On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
    Grippo, L
    Sciandrone, M
    [J]. OPERATIONS RESEARCH LETTERS, 2000, 26 (03) : 127 - 136
  • [5] HAN CG, 1990, SIAM PROC S, P92
  • [6] A simple decomposition method for support vector machines
    Hsu, CW
    Lin, CJ
    [J]. MACHINE LEARNING, 2002, 46 (1-3) : 291 - 314
  • [7] Joachims T., 1998, MAKING LARGE SCALE S
  • [8] Newton's method for large bound-constrained optimization problems
    Lin, CJ
    Moré, JJ
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (04) : 1100 - 1127
  • [9] On the convergence of the decomposition method for support vector machines
    Lin, CJ
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (06): : 1288 - 1298
  • [10] LIN CJ, 2009, J OPTIM THE IN PRESS