A Comparison of Sequence-Trained Deep Neural Networks and Recurrent Neural Networks Optical Modeling for Handwriting Recognition

被引:15
作者
Bluche, Theodore [1 ,2 ]
Ney, Hermann [2 ,3 ]
Kermorvant, Christopher [1 ]
机构
[1] A2iA SA, Paris, France
[2] LIMSI CNRS, Spoken Language Proc Grp, Orsay, France
[3] Rhein Westfal TH Aachen, Human Language Technol & Pattern Recognit, Aachen, Germany
来源
STATISTICAL LANGUAGE AND SPEECH PROCESSING, SLSP 2014 | 2014年 / 8791卷
关键词
Handwriting recognition; Recurrent Neural Networks; Deep neural networks;
D O I
10.1007/978-3-319-11397-5_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Long Short-Term Memory Recurrent Neural Networks are the current state-of-the-art in handwriting recognition. In speech recognition, Deep Multi-Layer Perceptrons (DeepMLPs) have become the standard acoustic model for Hidden Markov Models (HMMs). Although handwriting and speech recognition systems tend to include similar components and techniques, DeepMLPs are not used as optical model in unconstrained large vocabulary handwriting recognition. In this paper, we compare Bidirectional LSTM-RNNs with DeepMLPs for this task. We carried out experiments on two public databases of multi-line handwritten documents: Rimes and IAM. We show that the proposed hybrid systems yield performance comparable to the state-of-the-art, regardless of the type of features (hand-crafted or pixel values) and the neural network optical model (DeepMLP or RNN).
引用
收藏
页码:199 / 210
页数:12
相关论文
共 33 条
[1]  
[Anonymous], 2008, Advances in neural information processing systems, DOI DOI 10.1007/978-1-4471-4072-6_12
[2]  
Augustin E., 2006, PROC WORKSHOP FRONTI
[3]   Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition [J].
Bianne-Bernard, Anne-Laure ;
Menasri, Fares ;
Mohamad, Rami Al-Hajj ;
Mokbel, Chafic ;
Kermorvant, Christopher ;
Likforman-Sulem, Laurence .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (10) :2066-2080
[4]  
BLOOMBERG DS, 1995, P SOC PHOTO-OPT INS, V2422, P302, DOI 10.1117/12.205832
[5]   The A2iA Arabic Handwritten Text Recognition System at the OpenHaRT2013 Evaluation [J].
Bluche, Theodore ;
Louradour, Jerome ;
Knibbe, Maxime ;
Moysset, Bastien ;
Benzeghiba, Mohamed Faouzi ;
Kermorvant, Christopher .
2014 11TH IAPR INTERNATIONAL WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS (DAS 2014), 2014, :161-165
[6]  
Bluche T, 2013, INT CONF ACOUST SPEE, P2390, DOI 10.1109/ICASSP.2013.6638083
[7]   A structural and relational approach to handwritten word recognition [J].
Buse, R ;
Liu, ZQ ;
Caelli, T .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1997, 27 (05) :847-861
[8]  
Ciresan Dan Claudiu, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P581, DOI 10.1007/978-3-642-35289-8_31
[9]   Deep, Big, Simple Neural Nets for Handwritten Digit Recognition [J].
Ciresan, Dan Claudiu ;
Meier, Ueli ;
Gambardella, Luca Maria ;
Schmidhuber, Juergen .
NEURAL COMPUTATION, 2010, 22 (12) :3207-3220
[10]  
Deng L, 2013, INT CONF ACOUST SPEE, P8604, DOI 10.1109/ICASSP.2013.6639345