Intermittency route to strange nonchaotic attractors

被引:122
作者
Prasad, A
Mehra, V
Ramaswamy, R
机构
[1] School of Physical Sciences, Jawaharlal Nehru University, New Delhi
关键词
D O I
10.1103/PhysRevLett.79.4127
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Strange nonchaotic attractors (SNA) arise in quasiperiodically driven systems in the neighborhood of a saddle-node bifurcation whereby a strange attractor is replaced by a periodic (torus) attractor. This transition is accompanied by Type-I intermittency. The largest nontrivial Lyapunov exponent Lambda is a good order parameter for this route from chaos to SNA to periodic motion: the signature is distinctive and unlike that for other routes to SNA. In particular, Lambda changes sharply at the SNA to torus transition, as does the distribution of finite-time or N-step Lyapunov exponents, P(Lambda(N)).
引用
收藏
页码:4127 / 4130
页数:4
相关论文
共 50 条
[31]   Universal mechanism for the intermittent route to strange nonchaotic attractors in quasiperiodically forced systems [J].
Kim, SY ;
Lim, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (25) :6477-6489
[32]   Transition from strange nonchaotic to strange chaotic attractors [J].
Lai, YC .
PHYSICAL REVIEW E, 1996, 53 (01) :57-65
[33]   Strange nonchaotic attractors in Harper maps [J].
Haro, Alex ;
Puig, Joaquim .
CHAOS, 2006, 16 (03)
[34]   Strange nonchaotic attractors in oscillators sharing nonlinearity [J].
Asir, Paul M. ;
Murali, K. ;
Philominathan, P. .
CHAOS SOLITONS & FRACTALS, 2019, 118 :83-93
[35]   QUASIPERIODIC FORCING AND THE OBSERVABILITY OF STRANGE NONCHAOTIC ATTRACTORS [J].
ROMEIRAS, FJ ;
BONDESON, A ;
OTT, E ;
ANTONSEN, TM ;
GREBOGI, C .
PHYSICA SCRIPTA, 1989, 40 (03) :442-444
[36]   Multiple tori intermittency routes to strange nonchaotic attractors in a quasiperiodically-forced piecewise smooth system [J].
Zhao, Yifan ;
Zhang, Yongxiang .
NONLINEAR DYNAMICS, 2024, 112 (08) :6329-6338
[37]   Multiple tori intermittency routes to strange nonchaotic attractors in a quasiperiodically-forced piecewise smooth system [J].
Yifan Zhao ;
Yongxiang Zhang .
Nonlinear Dynamics, 2024, 112 :6329-6338
[38]   Mechanism for the band-merging route to strange nonchaotic attractors in quasiperiodically forced systems [J].
Lim, W ;
Kim, SY .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 47 (03) :414-419
[39]   Strange nonchaotic attractors in driven excitable systems [J].
Prasad, A ;
Biswal, B ;
Ramaswamy, R .
PHYSICAL REVIEW E, 2003, 68 (03)
[40]   Strange nonchaotic attractors with cellular neural networks [J].
Zhu, ZW ;
Wang, S ;
Leung, H .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07) :1551-1556