A generalized non-local optical response theory for plasmonic nanostructures

被引:433
作者
Mortensen, N. A. [1 ,2 ]
Raza, S. [1 ,3 ]
Wubs, M. [1 ,2 ]
Sondergaard, T. [4 ]
Bozhevolnyi, S. I. [5 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Ctr Nanostruct Graphene, DK-2800 Lyngby, Denmark
[3] Tech Univ Denmark, Ctr Electron Nanoscopy, DK-2800 Lyngby, Denmark
[4] Aalborg Univ, Dept Phys & Nanotechnol, DK-9220 Aalborg, Denmark
[5] Univ Southern Denmark, Dept Technol & Innovat, DK-5230 Odense, Denmark
基金
新加坡国家研究基金会;
关键词
ELECTRON-ENERGY-LOSS; MEAN FREE-PATH; FIELD ENHANCEMENT; QUANTUM; LIGHT; MODEL; SIZE; NANOPARTICLES; PARTICLES; DIFFUSION;
D O I
10.1038/ncomms4809
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metallic nanostructures exhibit a multitude of optical resonances associated with localized surface plasmon excitations. Recent observations of plasmonic phenomena at the sub-nanometre to atomic scale have stimulated the development of various sophisticated theoretical approaches for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory explains surprisingly well both the frequency shifts and size-dependent damping in individual metallic nanoparticles as well as the observed broadening of the crossover regime from bonding-dipole plasmons to charge-transfer plasmons in metal nanoparticle dimers, thus unravelling a classical broadening mechanism that even dominates the widely anticipated short circuiting by quantum tunnelling. We anticipate that our theory can be successfully applied in plasmonics to a wide class of conducting media, including doped semiconductors and low-dimensional materials such as graphene.
引用
收藏
页数:7
相关论文
共 60 条
  • [41] OPTICAL PROPERTIES OF A PLASMA SPHERE
    RUPPIN, R
    [J]. PHYSICAL REVIEW LETTERS, 1973, 31 (24) : 1434 - 1437
  • [42] Revealing the quantum regime in tunnelling plasmonics
    Savage, Kevin J.
    Hawkeye, Matthew M.
    Esteban, Ruben
    Borisov, Andrei G.
    Aizpurua, Javier
    Baumberg, Jeremy J.
    [J]. NATURE, 2012, 491 (7425) : 574 - 577
  • [43] Size dependence of refractive index of gold nanoparticles
    Scaffardi, LB
    Tocho, JO
    [J]. NANOTECHNOLOGY, 2006, 17 (05) : 1309 - 1315
  • [44] Observation of Quantum Tunneling between Two Plasmonic Nanoparticles
    Scholl, Jonathan A.
    Garcia-Etxarri, Aitzol
    Koh, Ai Leen
    Dionne, Jennifer A.
    [J]. NANO LETTERS, 2013, 13 (02) : 564 - 569
  • [45] Quantum plasmon resonances of individual metallic nanoparticles
    Scholl, Jonathan A.
    Koh, Ai Leen
    Dionne, Jennifer A.
    [J]. NATURE, 2012, 483 (7390) : 421 - U68
  • [46] Schuller JA, 2010, NAT MATER, V9, P193, DOI [10.1038/NMAT2630, 10.1038/nmat2630]
  • [47] THE MEAN FREE PATH OF ELECTRONS IN METALS
    SONDHEIMER, EH
    [J]. ADVANCES IN PHYSICS, 1952, 1 (01) : 1 - 42
  • [48] Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures
    Stella, Lorenzo
    Zhang, Pu
    Garcia-Vidal, F. J.
    Rubio, Angel
    Garcia-Gonzalez, P.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (17) : 8941 - 8949
  • [49] Tame MS, 2013, NAT PHYS, V9, P329, DOI [10.1038/nphys2615, 10.1038/NPHYS2615]
  • [50] Robust Subnanometric Plasmon Ruler by Rescaling of the Nonlocal Optical Response
    Teperik, T. V.
    Nordlander, P.
    Aizpurua, J.
    Borisov, A. G.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (26)