A generalized non-local optical response theory for plasmonic nanostructures

被引:437
作者
Mortensen, N. A. [1 ,2 ]
Raza, S. [1 ,3 ]
Wubs, M. [1 ,2 ]
Sondergaard, T. [4 ]
Bozhevolnyi, S. I. [5 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Ctr Nanostruct Graphene, DK-2800 Lyngby, Denmark
[3] Tech Univ Denmark, Ctr Electron Nanoscopy, DK-2800 Lyngby, Denmark
[4] Aalborg Univ, Dept Phys & Nanotechnol, DK-9220 Aalborg, Denmark
[5] Univ Southern Denmark, Dept Technol & Innovat, DK-5230 Odense, Denmark
基金
新加坡国家研究基金会;
关键词
ELECTRON-ENERGY-LOSS; MEAN FREE-PATH; FIELD ENHANCEMENT; QUANTUM; LIGHT; MODEL; SIZE; NANOPARTICLES; PARTICLES; DIFFUSION;
D O I
10.1038/ncomms4809
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metallic nanostructures exhibit a multitude of optical resonances associated with localized surface plasmon excitations. Recent observations of plasmonic phenomena at the sub-nanometre to atomic scale have stimulated the development of various sophisticated theoretical approaches for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory explains surprisingly well both the frequency shifts and size-dependent damping in individual metallic nanoparticles as well as the observed broadening of the crossover regime from bonding-dipole plasmons to charge-transfer plasmons in metal nanoparticle dimers, thus unravelling a classical broadening mechanism that even dominates the widely anticipated short circuiting by quantum tunnelling. We anticipate that our theory can be successfully applied in plasmonics to a wide class of conducting media, including doped semiconductors and low-dimensional materials such as graphene.
引用
收藏
页数:7
相关论文
共 60 条
[41]   OPTICAL PROPERTIES OF A PLASMA SPHERE [J].
RUPPIN, R .
PHYSICAL REVIEW LETTERS, 1973, 31 (24) :1434-1437
[42]   Revealing the quantum regime in tunnelling plasmonics [J].
Savage, Kevin J. ;
Hawkeye, Matthew M. ;
Esteban, Ruben ;
Borisov, Andrei G. ;
Aizpurua, Javier ;
Baumberg, Jeremy J. .
NATURE, 2012, 491 (7425) :574-577
[43]   Size dependence of refractive index of gold nanoparticles [J].
Scaffardi, LB ;
Tocho, JO .
NANOTECHNOLOGY, 2006, 17 (05) :1309-1315
[44]   Observation of Quantum Tunneling between Two Plasmonic Nanoparticles [J].
Scholl, Jonathan A. ;
Garcia-Etxarri, Aitzol ;
Koh, Ai Leen ;
Dionne, Jennifer A. .
NANO LETTERS, 2013, 13 (02) :564-569
[45]   Quantum plasmon resonances of individual metallic nanoparticles [J].
Scholl, Jonathan A. ;
Koh, Ai Leen ;
Dionne, Jennifer A. .
NATURE, 2012, 483 (7390) :421-U68
[46]  
Schuller JA, 2010, NAT MATER, V9, P193, DOI [10.1038/NMAT2630, 10.1038/nmat2630]
[47]   THE MEAN FREE PATH OF ELECTRONS IN METALS [J].
SONDHEIMER, EH .
ADVANCES IN PHYSICS, 1952, 1 (01) :1-42
[48]   Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures [J].
Stella, Lorenzo ;
Zhang, Pu ;
Garcia-Vidal, F. J. ;
Rubio, Angel ;
Garcia-Gonzalez, P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (17) :8941-8949
[49]  
Tame MS, 2013, NAT PHYS, V9, P329, DOI [10.1038/nphys2615, 10.1038/NPHYS2615]
[50]   Robust Subnanometric Plasmon Ruler by Rescaling of the Nonlocal Optical Response [J].
Teperik, T. V. ;
Nordlander, P. ;
Aizpurua, J. ;
Borisov, A. G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (26)