A generalized non-local optical response theory for plasmonic nanostructures

被引:437
作者
Mortensen, N. A. [1 ,2 ]
Raza, S. [1 ,3 ]
Wubs, M. [1 ,2 ]
Sondergaard, T. [4 ]
Bozhevolnyi, S. I. [5 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Ctr Nanostruct Graphene, DK-2800 Lyngby, Denmark
[3] Tech Univ Denmark, Ctr Electron Nanoscopy, DK-2800 Lyngby, Denmark
[4] Aalborg Univ, Dept Phys & Nanotechnol, DK-9220 Aalborg, Denmark
[5] Univ Southern Denmark, Dept Technol & Innovat, DK-5230 Odense, Denmark
基金
新加坡国家研究基金会;
关键词
ELECTRON-ENERGY-LOSS; MEAN FREE-PATH; FIELD ENHANCEMENT; QUANTUM; LIGHT; MODEL; SIZE; NANOPARTICLES; PARTICLES; DIFFUSION;
D O I
10.1038/ncomms4809
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metallic nanostructures exhibit a multitude of optical resonances associated with localized surface plasmon excitations. Recent observations of plasmonic phenomena at the sub-nanometre to atomic scale have stimulated the development of various sophisticated theoretical approaches for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory explains surprisingly well both the frequency shifts and size-dependent damping in individual metallic nanoparticles as well as the observed broadening of the crossover regime from bonding-dipole plasmons to charge-transfer plasmons in metal nanoparticle dimers, thus unravelling a classical broadening mechanism that even dominates the widely anticipated short circuiting by quantum tunnelling. We anticipate that our theory can be successfully applied in plasmonics to a wide class of conducting media, including doped semiconductors and low-dimensional materials such as graphene.
引用
收藏
页数:7
相关论文
共 60 条
[1]   Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime [J].
Andersen, Kirsten ;
Jensen, Kristian L. ;
Mortensen, N. Asger ;
Thygesen, Kristian S. .
PHYSICAL REVIEW B, 2013, 87 (23)
[2]   Random-matrix theory of quantum transport [J].
Beenakker, CWJ .
REVIEWS OF MODERN PHYSICS, 1997, 69 (03) :731-808
[3]  
Boardman AD., 1982, Electromagnetic surface modes
[4]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[5]   Diffusion in Confined Geometries [J].
Burada, P. Sekhar ;
Haenggi, Peter ;
Marchesoni, Fabio ;
Schmid, Gerhard ;
Talkner, Peter .
CHEMPHYSCHEM, 2009, 10 (01) :45-54
[6]   Competition between surface screening and size quantization for surface plasmons in nanoparticles [J].
Carmina Monreal, R. ;
Antosiewicz, Tomasz J. ;
Peter Apell, S. .
NEW JOURNAL OF PHYSICS, 2013, 15
[7]   Probing the Ultimate Limits of Plasmonic Enhancement [J].
Ciraci, C. ;
Hill, R. T. ;
Mock, J. J. ;
Urzhumov, Y. ;
Fernandez-Dominguez, A. I. ;
Maier, S. A. ;
Pendry, J. B. ;
Chilkoti, A. ;
Smith, D. R. .
SCIENCE, 2012, 337 (6098) :1072-1074
[8]   POLARIZABILITY OF A SMALL SPHERE INCLUDING NONLOCAL EFFECTS [J].
DASGUPTA, BB ;
FUCHS, R .
PHYSICAL REVIEW B, 1981, 24 (02) :554-561
[9]  
Datta S., 1997, Electronic transport in mesoscopic systems, DOI DOI 10.1063/1.2807624
[10]   Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials [J].
Engheta, Nader .
SCIENCE, 2007, 317 (5845) :1698-1702