A generalized non-local optical response theory for plasmonic nanostructures

被引:433
作者
Mortensen, N. A. [1 ,2 ]
Raza, S. [1 ,3 ]
Wubs, M. [1 ,2 ]
Sondergaard, T. [4 ]
Bozhevolnyi, S. I. [5 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Ctr Nanostruct Graphene, DK-2800 Lyngby, Denmark
[3] Tech Univ Denmark, Ctr Electron Nanoscopy, DK-2800 Lyngby, Denmark
[4] Aalborg Univ, Dept Phys & Nanotechnol, DK-9220 Aalborg, Denmark
[5] Univ Southern Denmark, Dept Technol & Innovat, DK-5230 Odense, Denmark
基金
新加坡国家研究基金会;
关键词
ELECTRON-ENERGY-LOSS; MEAN FREE-PATH; FIELD ENHANCEMENT; QUANTUM; LIGHT; MODEL; SIZE; NANOPARTICLES; PARTICLES; DIFFUSION;
D O I
10.1038/ncomms4809
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metallic nanostructures exhibit a multitude of optical resonances associated with localized surface plasmon excitations. Recent observations of plasmonic phenomena at the sub-nanometre to atomic scale have stimulated the development of various sophisticated theoretical approaches for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory explains surprisingly well both the frequency shifts and size-dependent damping in individual metallic nanoparticles as well as the observed broadening of the crossover regime from bonding-dipole plasmons to charge-transfer plasmons in metal nanoparticle dimers, thus unravelling a classical broadening mechanism that even dominates the widely anticipated short circuiting by quantum tunnelling. We anticipate that our theory can be successfully applied in plasmonics to a wide class of conducting media, including doped semiconductors and low-dimensional materials such as graphene.
引用
收藏
页数:7
相关论文
共 60 条
  • [1] Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime
    Andersen, Kirsten
    Jensen, Kristian L.
    Mortensen, N. Asger
    Thygesen, Kristian S.
    [J]. PHYSICAL REVIEW B, 2013, 87 (23)
  • [2] Random-matrix theory of quantum transport
    Beenakker, CWJ
    [J]. REVIEWS OF MODERN PHYSICS, 1997, 69 (03) : 731 - 808
  • [3] Boardman AD., 1982, Electromagnetic surface modes
  • [4] Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films
    Britnell, L.
    Ribeiro, R. M.
    Eckmann, A.
    Jalil, R.
    Belle, B. D.
    Mishchenko, A.
    Kim, Y. -J.
    Gorbachev, R. V.
    Georgiou, T.
    Morozov, S. V.
    Grigorenko, A. N.
    Geim, A. K.
    Casiraghi, C.
    Castro Neto, A. H.
    Novoselov, K. S.
    [J]. SCIENCE, 2013, 340 (6138) : 1311 - 1314
  • [5] Diffusion in Confined Geometries
    Burada, P. Sekhar
    Haenggi, Peter
    Marchesoni, Fabio
    Schmid, Gerhard
    Talkner, Peter
    [J]. CHEMPHYSCHEM, 2009, 10 (01) : 45 - 54
  • [6] Competition between surface screening and size quantization for surface plasmons in nanoparticles
    Carmina Monreal, R.
    Antosiewicz, Tomasz J.
    Peter Apell, S.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [7] Probing the Ultimate Limits of Plasmonic Enhancement
    Ciraci, C.
    Hill, R. T.
    Mock, J. J.
    Urzhumov, Y.
    Fernandez-Dominguez, A. I.
    Maier, S. A.
    Pendry, J. B.
    Chilkoti, A.
    Smith, D. R.
    [J]. SCIENCE, 2012, 337 (6098) : 1072 - 1074
  • [8] POLARIZABILITY OF A SMALL SPHERE INCLUDING NONLOCAL EFFECTS
    DASGUPTA, BB
    FUCHS, R
    [J]. PHYSICAL REVIEW B, 1981, 24 (02): : 554 - 561
  • [9] Datta S., 1997, Electronic transport in mesoscopic systems, DOI DOI 10.1063/1.2807624
  • [10] Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials
    Engheta, Nader
    [J]. SCIENCE, 2007, 317 (5845) : 1698 - 1702