Impacts of different urban canopy schemes in WRF/Chem on regional climate and air quality in Yangtze River Delta, China

被引:100
|
作者
Liao, Jingbiao [1 ]
Wang, Tijian [1 ]
Wang, Xuemei [2 ]
Xie, Min [1 ]
Jiang, Ziqiang [1 ]
Huang, Xiaoxian [1 ]
Zhu, Jialei [1 ]
机构
[1] Nanjing Univ, Sch Atmospher Sci, Nanjing 210093, Jiangsu, Peoples R China
[2] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Urban canopy; Climate; Air quality; WRF/Chem; YRD region; HEAT-ISLAND SIMULATION; SURFACE OZONE; MODEL; EMISSIONS; URBANIZATION; PARAMETERIZATION; PRECIPITATION; EXPANSION; SUMMER;
D O I
10.1016/j.atmosres.2014.04.005
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Yangtze River Delta (YRD) region has experienced a remarkable urbanization during the past 30 years, and regional climate change and air pollution are becoming more and more evident due to urbanization. Impacts of urban canopy on regional climate and air quality in dry- and wet-season are investigated in this paper, utilizing the Weather Research and Forecasting/Chemistry (WRF/Chem) model. Four regimes of urban canopy schemes with updated USGS land-use data in actual state of 2004 base on MODIS observations are examined: (1) SLAB scheme that does not consider urban canopy parameters (the control experiment in this paper); (2) a single-layer urban model with a fixed diurnal profile for anthropogenic heat (UCM); (3) multilayer urban canopy model (BEP-Building effect parameterization); (4) multilayer urban models with a building energy model including anthropogenic heat due to air conditioning (BEP + BEM). Results show that, compared with observations, the best 2-m temperature estimates with minimum bias are obtained with SLAB and BEP + BEM schemes, while the best 10-m wind speed predictions are obtained with BEP and BEP + BEM scheme. For PM10 and ozone predictions, BEP + BEM scheme predicted PM10 well during January, while the best estimate of PMio is obtained with UCM scheme during July, BEP + BEM and SLAB schemes best estimated ozone concentrations for both the two months. Spatial differences of meteorological factors between canopy schemes and control scheme show that compared with SLAB scheme, BEP and BEP + BEM schemes cause an increase of temperature with differences of 0.5 degrees C and 0.3 degrees C, respectively, UCM scheme simulates lower temperature with decrease of 0.7 degrees C during January. In July, all the canopy experiments calculates lower air temperature with reduction of 0.5 degrees C-1.6 degrees C. All the canopy experiments compute lower 10-m wind speed for both January and July. Decreases were 0.7 m/s (0.8 m/s) with UCM, 1.7 m/s (2.6 m/s) with BEP, and 1.8 m/s (23 m/s) with BEP + BEM schemes in January (July), respectively. For chemical field distributions, results show that, compared with SLAB scheme, UCM scheme calculates higher PM10 concentration in both January and July, with the differences of 223% (or 24.4 mu g/m(3)) in January, and 31.4% (or 17.4 mu g/m(3)) in July, respectively. As large as 32.7% (or 18.3 mu g/m(3)) of PMio increase is found over Hangzhou city during July. While 18.6% (or 22.1 mu g/m(3)) and 16.7% (or 24.6 mu g/m(3)) of PM10 decreases are fund in BEP and BEP + BEM schemes during January. Compared with control experiment during January, 6.5% (or 2.6 ppb) to 10.4% (4.2 ppb) increases of ozone are computed over mage-cities by canopy experiments. All the three canopy schemes predict lower ozone concentrations and as large as 30.2% (or 11.2 ppb) decrease is obtained with UCM scheme, and 16.5% (6.2 ppb) decrease with BEP scheme during July. The SLAB scheme is suitable for real-time weather forecast while multiple urban canopy scheme is necessary when quantify the urbanization impacts on regional climate. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:226 / 243
页数:18
相关论文
共 50 条
  • [31] Carbon reduction of urban form strategies: Regional heterogeneity in Yangtze River Delta, China
    Jin, Yushan
    Xu, Yuanshuo
    LAND USE POLICY, 2024, 141
  • [32] Analysis of air pollution reduction and climate change mitigation in the industry sector of Yangtze River Delta in China
    Zheng, Jiajia
    Jiang, Ping
    Qiao, Wen
    Zhu, Yun
    Kennedy, Erin
    JOURNAL OF CLEANER PRODUCTION, 2016, 114 : 314 - 322
  • [33] Impacts of Roof/Ground Mitigation Strategies on Improving the Urban Thermal Environment and Human Comfort over the Yangtze River Delta, China
    Ma, Hongyun
    Zhang, Mi
    Chen, Haishan
    Wang, Yan
    JOURNAL OF METEOROLOGICAL RESEARCH, 2024, 38 (01) : 108 - 125
  • [34] Projecting the impacts of atmospheric conditions under climate change on air quality over the Pearl River Delta region
    Tong, Cheuk Hei Marcus
    Yim, Steve Hung Lam
    Rothenberg, Daniel
    Wang, Chien
    Lin, Chuan-Yao
    Chen, Yongqin David
    Lau, Ngar Cheung
    ATMOSPHERIC ENVIRONMENT, 2018, 193 : 79 - 87
  • [35] The Impacts of Urbanization on Carbon Emission Performance: New Evidence from the Yangtze River Delta Urban Agglomeration, China
    Qiao, Wenyi
    Xie, Yike
    Liu, Jun
    Huang, Xianjin
    LAND, 2025, 14 (01)
  • [36] A Numeric Study of Regional Climate Change Induced by Urban Expansion in the Pearl River Delta, China
    Wang, Xuemei
    Liao, Jingbiao
    Zhang, Jian
    Shen, Chong
    Chen, Weihua
    Xia, Beicheng
    Wang, Tijian
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2014, 53 (02) : 346 - 362
  • [37] Spatiotemporal pattern of regional carbon emissions and its influencing factors in the Yangtze River Delta urban agglomeration of China
    Lv, Tiangui
    Hu, Han
    Zhang, Xinmin
    Xie, Hualin
    Fu, Shufei
    Wang, Li
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2022, 194 (07)
  • [38] Impact of urbanization on air quality in the Yangtze River Delta during the COVID-19 lockdown in China
    Shen, Lijuan
    Wang, Honglei
    Zhu, Bin
    Zhao, Tianliang
    Liu, Ankang
    Lu, Wen
    Kang, Hanqing
    Wang, Yuesi
    JOURNAL OF CLEANER PRODUCTION, 2021, 296
  • [39] Energy consumption, air quality, and air pollution spatial spillover effects: evidence from the Yangtze River Delta of China
    He, Lingyun
    Zhang, Lu
    Liu, Rongyan
    CHINESE JOURNAL OF POPULATION RESOURCES AND ENVIRONMENT, 2019, 17 (04) : 329 - 340
  • [40] Projection of ship emissions and their impact on air quality in 2030 in Yangtze River delta, China
    Zhao, Junri
    Zhang, Yan
    Patton, Allison P.
    Ma, Weichun
    Kan, Haidong
    Wu, Libo
    Fung, Freda
    Wang, Shuxiao
    Ding, Dian
    Walker, Katherine
    ENVIRONMENTAL POLLUTION, 2020, 263