Chaotic hysteresis in an adiabatically oscillating double well

被引:11
作者
Berglund, N
Kunz, H
机构
[1] Institut de Physique Théorique, EPFL, PHB-Ecublens, Lausanne
关键词
D O I
10.1103/PhysRevLett.78.1691
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the motion of a damped particle in a potential oscillating slowly between a simple and a double well. The system displays hysteresis effects which can be of a periodic or chaotic type. We explain this behavior by computing an analytic expression of a Poincare map.
引用
收藏
页码:1691 / 1694
页数:4
相关论文
共 13 条
[1]  
BERGLUND N, IN PRESS
[2]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
[3]   SCALING LAWS FOR DYNAMICAL HYSTERESIS IN A MULTIDIMENSIONAL LASER SYSTEM [J].
HOHL, A ;
VANDERLINDEN, HJC ;
ROY, R ;
GOLDSZTEIN, G ;
BRONER, F ;
STROGATZ, SH .
PHYSICAL REVIEW LETTERS, 1995, 74 (12) :2220-2223
[4]   SCALING LAW FOR DYNAMIC HYSTERESIS [J].
JUNG, P ;
GRAY, G ;
ROY, R ;
MANDEL, P .
PHYSICAL REVIEW LETTERS, 1990, 65 (15) :1873-1876
[5]   ISING-MODEL IN A TIME-DEPENDENT MAGNETIC-FIELD [J].
LO, WS ;
PELCOVITS, RA .
PHYSICAL REVIEW A, 1990, 42 (12) :7471-7474
[6]   THE SLOW PASSAGE THROUGH A STEADY BIFURCATION - DELAY AND MEMORY EFFECTS [J].
MANDEL, P ;
ERNEUX, T .
JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (5-6) :1059-1070
[7]   LASER LORENZ EQUATIONS WITH A TIME-DEPENDENT PARAMETER [J].
MANDEL, P ;
ERNEUX, T .
PHYSICAL REVIEW LETTERS, 1984, 53 (19) :1818-1820
[8]  
Mishchenko E. F., 1994, ASYMPTOTIC METHODS S
[9]  
NEISHTADT AI, 1987, DIFF EQUAT+, V23, P1385
[10]  
NEISHTADT AI, 1988, DIFF EQUAT+, V24, P171