Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors

被引:89
作者
Alexander, George Vadakkethalakel [1 ]
Patra, Srabani [1 ]
Valiyaveetil, Sona [1 ]
Raj, Sobhan [1 ]
Sugumar, Manoj Krishna [1 ]
Din, Mir Mehraj Ud [1 ]
Murugan, Ramaswamy [1 ]
机构
[1] Pondicherry Univ, Dept Phys, High Energy Dens Batteries Res Lab, Pondicherry 605014, India
关键词
Lithium garnet; Interfacial engineering; Lithium metal battery; High energy density; ION BATTERY; RECHARGEABLE BATTERIES; STATE ELECTROLYTE; LI7LA3ZR2O12; ANODES; STABILITY; OXIDE; CONDUCTIVITY; RESISTANCE; LAYER;
D O I
10.1016/j.jpowsour.2018.06.096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li7La3Zr2O12 (LLZ) is one of the most promising solid electrolyte for all-solid-state batteries, owing to its high Li + conductivity and stability when in contact with lithium metal. However, LLZ has its own challenges in realizing high performance due to its high electrode/electrolyte interfacial resistance. To address this issue, we report a systematic investigation of interfacial resistance, with a metallic Li strip and a thin layer of Li deposition by thermal evaporation (TE) over dense and high Li + conductive pristine Al-LLZ (Li6.28Al0.24La3Zr2O12) and Au?Al-LLZ. Thermal treatment of Li (TE)?Au?Al-LLZ?Au?Li (TE) at 180 degrees C for 1-h exhibits a dramatic reduction in interfacial resistance along with stable Li platting/stripping at room temperature (25 degrees C). Scanning Electron Microscopic (SEM) investigation on the interface of the Li (TE)?Au?Al-LLZ?Au?Li (TE) reveals the formation of a favorable thin layer of Li-Au alloy through the heat treatment at 180 degrees C. A room temperature working cell with LiCoO2 as a cathode, metallic Li (TE) as anode and Al-LLZ as a solid electrolyte is possible by introducing a thin layer of Au at anode interface and a soft polypropylene interlayer at cathode interface.
引用
收藏
页码:764 / 773
页数:10
相关论文
共 36 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using 7Li MRI [J].
Chang, Hee Jung ;
Ilott, Andrew J. ;
Trease, Nicole M. ;
Mohammadi, Mohaddese ;
Jerschow, Alexej ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (48) :15209-15216
[3]   The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes [J].
Cheng, Lei ;
Crumlin, Ethan J. ;
Chen, Wei ;
Qiao, Ruimin ;
Hou, Huaming ;
Lux, Simon Franz ;
Zorba, Vassilia ;
Russo, Richard ;
Kostecki, Robert ;
Liu, Zhi ;
Persson, Kristin ;
Yang, Wanli ;
Cabana, Jordi ;
Richardson, Thomas ;
Chen, Guoying ;
Doeff, Marca .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) :18294-18300
[4]   Effect of Simultaneous Substitution of Y and Ta on the Stabilization of Cubic Phase, Microstructure, and Li+ Conductivity of Li7La3Zr2O12 Lithium Garnet [J].
Dhivya, L. ;
Murugan, Ramaswamy .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (20) :17606-17615
[5]   Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Fu, Zhezhen ;
Xie, Hua ;
Yao, Yonggang ;
Liu, Boyang ;
Carter, Marcus ;
Wachsman, Eric ;
Hu, Liangbing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (47) :14942-14947
[6]   Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface [J].
Fu, Kun ;
Gong, Yunhui ;
Liu, Boyang ;
Zhu, Yizhou ;
Xu, Shaomao ;
Yao, Yonggang ;
Luo, Wei ;
Wang, Chengwei ;
Lacey, Steven D. ;
Dai, Jiaqi ;
Chen, Yanan ;
Mo, Yifei ;
Wachsman, Eric ;
Hu, Liangbing .
SCIENCE ADVANCES, 2017, 3 (04)
[7]  
Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/nmat4821, 10.1038/NMAT4821]
[8]   Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides [J].
Julien, CM ;
Massot, M .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 100 (01) :69-78
[9]   In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery [J].
Kato, Takehisa ;
Hamanaka, Tadashi ;
Yamamoto, Kazuo ;
Hirayama, Tsukasa ;
Sagane, Fumihiro ;
Motoyama, Munekazu ;
Iriyama, Yasutoshi .
JOURNAL OF POWER SOURCES, 2014, 260 :292-298
[10]   Metallic anodes for next generation secondary batteries [J].
Kim, Hansu ;
Jeong, Goojin ;
Kim, Young-Ugk ;
Kim, Jae-Hun ;
Park, Cheol-Min ;
Sohn, Hun-Joon .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (23) :9011-9034