A direct Eulerian GRP scheme for compressible fluid flows

被引:106
作者
Ben-Artzi, Matania
Li, Jiequan
Warnecke, Gerald
机构
[1] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
[2] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
[3] Univ Magdeburg, Inst Anal & Numer, D-39106 Magdeburg, Germany
基金
美国国家科学基金会;
关键词
the generalized Riemann problem scheme; the Eulerian version; Riemann invariants; characteristic coordinates;
D O I
10.1016/j.jcp.2006.01.044
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A direct Eulerian generalized Riemann problem (GRP) scheme is derived for compressible fluid flows. Riemann invariants are introduced as the main ingredient to resolve the generalized Riemann problem (GRP) directly for the Eulerian formulation. The crucial auxiliary Lagrangian scheme in the original GRP scheme is not necessary in the present framework. The delicate sonic cases can be easily treated and the extension to multidimensional cases is obtained using the dimensional splitting technique. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:19 / 43
页数:25
相关论文
共 26 条
[1]  
Ben-Artzi M., 2003, Generalized Riemann Problems in Computational Gas Dynamics, V11
[2]   THE GENERALIZED RIEMANN PROBLEM FOR REACTIVE FLOWS [J].
BENARTZI, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 81 (01) :70-101
[3]   AN UPWIND 2ND-ORDER SCHEME FOR COMPRESSIBLE DUCT FLOWS [J].
BENARTZI, M ;
FALCOVITZ, J .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (03) :744-768
[4]   A 2ND-ORDER GODUNOV-TYPE SCHEME FOR COMPRESSIBLE FLUID-DYNAMICS [J].
BENARTZI, M ;
FALCOVITZ, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (01) :1-32
[5]   AN ASYMPTOTIC-EXPANSION FOR THE SOLUTION OF THE GENERALIZED RIEMANN PROBLEM .2. APPLICATION TO THE EQUATIONS OF GAS-DYNAMICS [J].
BOURGEADE, A ;
LEFLOCH, P ;
RAVIART, PA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1989, 6 (06) :437-480
[6]  
Chang T, 2000, DISCRET CONTIN DYN S, V6, P419
[7]  
Courant R., 1948, Supersonic Flow and Shock Waves
[8]   ON GODUNOV-TYPE METHODS NEAR LOW-DENSITIES [J].
EINFELDT, B ;
MUNZ, CD ;
ROE, PL ;
SJOGREEN, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 92 (02) :273-295
[9]  
GODLEWSKI E, 1996, APPL MATH SCI, V118
[10]  
Godunov SK., 1959, MAT SBORNIK, V89, P271