Quaternionic algebraic cycles and reality

被引:13
作者
Dos Santos, PF [1 ]
Lima, P
机构
[1] Inst Super Tecn, Dept Matemat, Lisbon, Portugal
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
D O I
10.1090/S0002-9947-04-03663-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we compute the equivariant homotopy type of spaces of algebraic cycles on real Brauer-Severi varieties, under the action of the Galois group Gal(C/R). Appropriate stabilizations of these spaces yield two equivariant spectra. The first one classifies Dupont/Seymour's quaternionic K-theory, and the other one classifies an equivariant cohomology theory Z3*(-) which is a natural recipient of characteristic classes KH*(X)-->3*(X) for quaternionic bundles over Real spaces X.
引用
收藏
页码:4701 / 4736
页数:36
相关论文
共 31 条
[21]  
LEWIS LG, 1986, LECT NOTES MATH, V1213, P1
[22]  
LEWIS LG, 1996, CBMS, V91
[23]  
Lima P, 1997, MATH Z, V224, P567, DOI 10.1007/PL00004297
[24]   THE TOPOLOGICAL GROUP-STRUCTURE OF ALGEBRAIC CYCLES [J].
LIMA, P ;
LIMAFILHO, P .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) :467-491
[25]  
May J. P., 1972, The geometry of iterated loop spaces, V271, DOI DOI 10.1007/BFB0067491
[26]  
Mostovoy J, 2000, BOL SOC MAT MEX, V6, P151
[27]  
Peter May J., 1977, LECT NOTES MATH, V577
[28]  
Quillen D., 1973, Lecture Notes in Math., V341, P85, DOI 10.1007/BFb0067053
[29]  
SEGAL GB, 1968, PUBL MATH-PARIS, V34, P129
[30]   REAL K-THEORY OF LIE GROUPS AND HOMOGENEOUS SPACES [J].
SEYMOUR, RM .
QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (93) :7-30