Quaternionic algebraic cycles and reality

被引:13
作者
Dos Santos, PF [1 ]
Lima, P
机构
[1] Inst Super Tecn, Dept Matemat, Lisbon, Portugal
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
D O I
10.1090/S0002-9947-04-03663-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we compute the equivariant homotopy type of spaces of algebraic cycles on real Brauer-Severi varieties, under the action of the Galois group Gal(C/R). Appropriate stabilizations of these spaces yield two equivariant spectra. The first one classifies Dupont/Seymour's quaternionic K-theory, and the other one classifies an equivariant cohomology theory Z3*(-) which is a natural recipient of characteristic classes KH*(X)-->3*(X) for quaternionic bundles over Real spaces X.
引用
收藏
页码:4701 / 4736
页数:36
相关论文
共 31 条
[1]   K-THEORY AND REALITY [J].
ATIYAH, MF .
QUARTERLY JOURNAL OF MATHEMATICS, 1966, 17 (68) :367-&
[2]   THE STABLE HOMOTOPY OF THE CLASSICAL GROUPS [J].
BOTT, R .
ANNALS OF MATHEMATICS, 1959, 70 (02) :313-337
[3]   ALGEBRAIC CYCLES AND INFINITE LOOP-SPACES [J].
BOYER, CP ;
LAWSON, HB ;
LIMAFILHO, P ;
MANN, BM ;
MICHELSOHN, ML .
INVENTIONES MATHEMATICAE, 1993, 113 (02) :373-388
[4]   FIXED SET SYSTEMS OF EQUIVARIANT INFINITE LOOP-SPACES [J].
COSTENOBLE, SR ;
WANER, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 326 (02) :485-505
[5]  
COSTENOBLE SR, 1992, MICH MATH J, V39, P325
[6]   A note on the equivariant Dold-Thom theorem [J].
dos Santos, PF .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 183 (1-3) :299-312
[7]   Algebraic cycles on real varieties and Z/2-equivariant homotopy theory [J].
dos Santos, PF .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 86 :513-544
[8]  
DUGGER D, 2001, ATIYAHHIRZEBRUCH SPE
[9]   SYMPLECTIC BUNDLES AND KR-THEORY [J].
DUPONT, JL .
MATHEMATICA SCANDINAVICA, 1969, 24 (01) :27-&
[10]  
DUPONT JL, 1999, NOTE CHARACTERISTIC