Gradients of substrate-bound laminin orient axonal specification of neurons

被引:348
作者
Dertinger, SKW
Jiang, XY
Li, ZY
Murthy, VN
Whitesides, GM
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
microfluidics; neuronal polarity; hippocampal;
D O I
10.1073/pnas.192457199
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Little is known about the influence of substrate-bound gradients on neuronal development, since it has been difficult to fabricate gradients over the distances typically required for biological studies (a few hundred micrometers). This article demonstrates a generally applicable technique for the fabrication of substrate-bound gradients of proteins with complex shapes, using laminar flows in microchannels. Gradients that range from pure laminin to pure BSA were formed in solution by using a network of microchannels, and these proteins were allowed to adsorb onto a homogeneous layer of poly-L-lysine. Rat hippocampal neurons were cultivated on these substrate-bound gradients. Analysis of optical images of these neurons showed that axon specification is oriented in the direction of increasing surface density of laminin. Linear gradients in laminin adsorbed from a gradient in solution having a slope of del[laminin] > about 0.06 mug (ml.mum)(-1) (defined by dividing the change of concentration of laminin in solution over the distance of the gradient) orient axon specification, whereas those with del[laminin] < about 0.06 mug (ml.mum)(-1) have no effect.
引用
收藏
页码:12542 / 12547
页数:6
相关论文
共 27 条
[1]   Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping [J].
Anderson, JR ;
Chiu, DT ;
Jackman, RJ ;
Cherniavskaya, O ;
McDonald, JC ;
Wu, HK ;
Whitesides, SH ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2000, 72 (14) :3158-3164
[2]   SIGNAL TRANSDUCTION FOR CHEMOTAXIS AND HAPTOTAXIS BY MATRIX MOLECULES IN TUMOR-CELLS [J].
AZNAVOORIAN, S ;
STRACKE, ML ;
KRUTZSCH, H ;
SCHIFFMANN, E ;
LIOTTA, LA .
JOURNAL OF CELL BIOLOGY, 1990, 110 (04) :1427-1438
[3]   AXON GUIDANCE BY GRADIENTS OF A TARGET-DERIVED COMPONENT [J].
BAIER, H ;
BONHOEFFER, F .
SCIENCE, 1992, 255 (5043) :472-475
[4]   The role of local actin instability in axon formation [J].
Bradke, F ;
Dotti, CG .
SCIENCE, 1999, 283 (5409) :1931-1934
[5]   TUMOR-CELL HAPTOTAXIS ON COVALENTLY IMMOBILIZED LINEAR AND EXPONENTIAL GRADIENTS OF A CELL-ADHESION PEPTIDE [J].
BRANDLEY, BK ;
SCHNAAR, RL .
DEVELOPMENTAL BIOLOGY, 1989, 135 (01) :74-86
[6]   Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems [J].
Chiu, DT ;
Jeon, NL ;
Huang, S ;
Kane, RS ;
Wargo, CJ ;
Choi, IS ;
Ingber, DE ;
Whitesides, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2408-2413
[7]   NEURONAL POLARITY [J].
CRAIG, AM ;
BANKER, G .
ANNUAL REVIEW OF NEUROSCIENCE, 1994, 17 :267-310
[8]   Generation of gradients having complex shapes using microfluidic networks [J].
Dertinger, SKW ;
Chiu, DT ;
Jeon, NL ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2001, 73 (06) :1240-1246
[9]  
DOTTI CG, 1988, J NEUROSCI, V8, P1454
[10]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984