Research progress of plasmonic nanofocusing

被引:8
作者
Li Pan [1 ]
机构
[1] Capital Normal Univ, Dept Phys, Beijing Key Lab Nanophoton & Nanostruct NPNS, Beijing 100048, Peoples R China
关键词
surface plasmons; tapered nanostructures; nanofocusing; localized field enhancement; SURFACE-PLASMON; SINGLE-MOLECULE; WAVE-GUIDES; POLARITON PROPAGATION; GOLD; SERS; TIP; TRANSMISSION; ENHANCEMENT; LIGHT;
D O I
10.7498/aps.68.20190564
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Surface plasmons (SPs) are the surface waves of collective oscillations of free electrons at metal-dielectric interface, which have the ability to overcome the diffraction limit and to enhance the giant near-field. Tapered metallic nanostructures that support surface plasmons' propagation are highly attractive to nanophotonic applications because of their waveguiding and field-focusing properties. This distinct morphologic feature enables the functionality known as nanofocusing. As a result, the plasmons can be guided in these nanostructures and finally focused on the sharp apex to greatly enhance the local field. This attractive effect can be widely used for effective remote-excitation detection/sensing. In this paper, we review various types of plasmonic nanofocusing structures operating in the visible and infrared region. We focus on their fundamentals, fabrications, and applications. Firstly, we discuss the mechanisms of the plasmonic nanofocusing. Then, the characteristics of various tapered metallic nanostructures of SPs are reviewed, including on-chip waveguides, metal tips and bottom-up fabricated nanowires. For applications, some prototypes of plasmonic nanofocusing for bio/chemo sensing are demonstrated. Finally, a summary and outlook of plasmonic waveguides are given.
引用
收藏
页数:16
相关论文
共 96 条
[1]   Plasmon-assisted transmission of entangled photons [J].
Altewischer, E ;
van Exter, MP ;
Woerdman, JP .
NATURE, 2002, 418 (6895) :304-306
[2]   Gold Nanobelts as High Confinement Plasmonic Waveguides [J].
Anderson, Lindsey J. E. ;
Zhen, Yu-Rong ;
Payne, Courtney M. ;
Nordlander, Peter ;
Hafner, Jason H. .
NANO LETTERS, 2013, 13 (12) :6256-6261
[3]   Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis [J].
Baker, GA ;
Moore, DS .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2005, 382 (08) :1751-1770
[4]   Surface plasmon-polariton length scales: a route to sub-wavelength optics [J].
Barnes, WL .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2006, 8 (04) :S87-S93
[5]   Single-molecule optomechanics in "picocavities" [J].
Benz, Felix ;
Schmidt, Mikolaj K. ;
Dreismann, Alexander ;
Chikkaraddy, Rohit ;
Zhang, Yao ;
Demetriadou, Angela ;
Carnegie, Cloudy ;
Ohadi, Hamid ;
de Nijs, Bart ;
Esteban, Ruben ;
Aizpurua, Javier ;
Baumberg, Jeremy J. .
SCIENCE, 2016, 354 (6313) :726-729
[6]   Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale [J].
Berweger, Samuel ;
Atkin, Joanna M. ;
Olmon, Robert L. ;
Raschke, Markus B. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (07) :945-952
[7]   Femtosecond Nanofocusing with Full Optical Waveform Control [J].
Berweger, Samuel ;
Atkin, Joanna M. ;
Xu, Xiaoji G. ;
Olmon, Robert L. ;
Raschke, Markus B. .
NANO LETTERS, 2011, 11 (10) :4309-4313
[8]   APPLIED PHYSICS The Case for Plasmonics [J].
Brongersma, Mark L. ;
Shalaev, Vladimir M. .
SCIENCE, 2010, 328 (5977) :440-441
[9]   Synthesis and Characterization of Plasmonic Resonant Guided Wave Networks [J].
Burgos, Stanley P. ;
Lee, Ho W. ;
Feigenbaum, Eyal ;
Briggs, Ryan M. ;
Atwater, Harry A. .
NANO LETTERS, 2014, 14 (06) :3284-3292
[10]   Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy [J].
Chen, Shu ;
Zhang, Yuejiao ;
Shih, Tien-Mo ;
Yang, Weimin ;
Hu, Shu ;
Hu, Xiaoyan ;
Li, Jianfeng ;
Ren, Bin ;
Mao, Bingwei ;
Yang, Zhilin ;
Tian, Zhongqun .
NANO LETTERS, 2018, 18 (04) :2209-2216