SPECTRAL DISTRIBUTION OF THE FREE JACOBI PROCESS, REVISITED

被引:7
作者
Hamdi, Tarek [1 ,2 ]
机构
[1] Qassim Univ, Coll Business Adm, Dept Management Informat Syst, Buraydah, Saudi Arabia
[2] Univ Tunis El Manar, Lab Anal Math & Applicat LR11ES11, Tunis, Tunisia
关键词
free Jacobi process; free unitary Brownian motion; multiplicative convolution; spectral distribution; Herglotz transform; Szego transformation; ONE PROJECTION; FREE ENTROPY; INFORMATION; LIBERATION;
D O I
10.2140/apde.2018.11.2137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a description for the spectral distribution of the free Jacobi process for any initial pair of projections. This result relies on a study of the unitary operator RUt SU*(t), where R, S are two symmetries and (U-t)(t >= 0) is a free unitary Brownian motion, freely independent from {R, S}. In particular, for nonnull traces of R and S, we prove that the spectral measure of RUt SU*(t) possesses two atoms at +/- 1 and an L-infinity-density on the unit circle T for every t > 0. Next, via a Szego-type transformation of this law, we obtain a full description of the spectral distribution of PU(t)QU*(t) beyond the case where tau(P) = tau(Q) = 1/2. Finally, we give some specializations for which these measures are explicitly computed.
引用
收藏
页码:2137 / 2148
页数:12
相关论文
共 25 条
[11]   Spectral Distribution of the Free Jacobi Process [J].
Demni, Nizar ;
Hamdi, Tarek ;
Hmidi, Taoufik .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (03) :1351-1368
[12]  
Franz U., 2006, BANACH CTR PUBL, V73, P153
[13]  
Franz U., 2008, AN PROB SEM C, V16, P83
[14]  
Hamdi T., 2018, COMPLEX ANAL OPER TH
[15]  
Hamdi T., 2017, PREPRINT
[16]   Monotone and boolean unitary Brownian motions [J].
Hamdi, Tarek .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2015, 18 (02)
[17]   A log-Sobolev type inequality for free entropy of two projections [J].
Hiai, Fumio ;
Ueda, Yoshimichi .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01) :239-249
[18]   REMARKS ON FREE MUTUAL INFORMATION AND ORBITAL FREE ENTROPY [J].
Izumi, Masaki ;
Ueda, Yoshimichi .
NAGOYA MATHEMATICAL JOURNAL, 2015, 220 :45-66
[19]  
Koosis P., 1998, CAMBRIDGE TRACTS MAT, V115
[20]  
Lawler G. F., 2005, MATH SURVEYS MONOGRA, V114, DOI DOI 10.1090/SURV/114