SPECTRAL DISTRIBUTION OF THE FREE JACOBI PROCESS, REVISITED

被引:7
作者
Hamdi, Tarek [1 ,2 ]
机构
[1] Qassim Univ, Coll Business Adm, Dept Management Informat Syst, Buraydah, Saudi Arabia
[2] Univ Tunis El Manar, Lab Anal Math & Applicat LR11ES11, Tunis, Tunisia
来源
ANALYSIS & PDE | 2018年 / 11卷 / 08期
关键词
free Jacobi process; free unitary Brownian motion; multiplicative convolution; spectral distribution; Herglotz transform; Szego transformation; ONE PROJECTION; FREE ENTROPY; INFORMATION; LIBERATION;
D O I
10.2140/apde.2018.11.2137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a description for the spectral distribution of the free Jacobi process for any initial pair of projections. This result relies on a study of the unitary operator RUt SU*(t), where R, S are two symmetries and (U-t)(t >= 0) is a free unitary Brownian motion, freely independent from {R, S}. In particular, for nonnull traces of R and S, we prove that the spectral measure of RUt SU*(t) possesses two atoms at +/- 1 and an L-infinity-density on the unit circle T for every t > 0. Next, via a Szego-type transformation of this law, we obtain a full description of the spectral distribution of PU(t)QU*(t) beyond the case where tau(P) = tau(Q) = 1/2. Finally, we give some specializations for which these measures are explicitly computed.
引用
收藏
页码:2137 / 2148
页数:12
相关论文
共 25 条