Universality with respect to ω-limit sets

被引:2
作者
Chudziak, Jacek [2 ]
Garcia Guirao, Juan Luis [3 ]
Snoha, L'ubomir [1 ]
Spitalsky, Vladimir [1 ]
机构
[1] Matej Bel Univ, Dept Math, Fac Nat Sci, Banska Bystrica 97401, Slovakia
[2] Univ Rzeszow, Dept Math, PL-35310 Rzeszow, Poland
[3] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Murcia 30203, Spain
关键词
omega-limit set; Universal system; Graph; Dendrite; Cantor set; CONTINUOUS MAP; END-POINTS; DENDRITES; INTERVAL; SPACE;
D O I
10.1016/j.na.2008.12.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A discrete dynamical system on a compact metric space X is called universal (with respect to omega-limit sets) if, among its omega-limit sets, there is a homeomorphic copy of any omega-limit set of any dynamical system on X. By a result of Pokluda and Smital the unit interval admits a universal system. In this paper, we study the problem of the existence of universal systems on Cantor spaces, graphs, dendrites and higher-dimensional spaces. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1485 / 1495
页数:11
相关论文
共 29 条
[1]  
Acosta G, 2007, HOUSTON J MATH, V33, P753
[2]  
Agronsky S. J., 1989, Real Anal. Exchange, V15, P483
[3]  
AGRONSKY SJ, 1991, REAL ANAL EXCHANGE, V17, P371
[4]  
[Anonymous], 1920, Fund. Math, DOI DOI 10.4064/FM-1-1-17-27
[5]   Dendrites with a closed set of end points [J].
Arévalo, D ;
Charatonik, WJ ;
Covarrubias, PP ;
Simón, L .
TOPOLOGY AND ITS APPLICATIONS, 2001, 115 (01) :1-17
[6]   The space of omega-limit sets of a continuous map of the interval [J].
Blokh, A ;
Bruckner, AM ;
Humke, PD ;
Smital, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (04) :1357-1372
[7]  
Borsuk K., 1967, MONOGRAFIE MATEMATYC, V44
[8]  
Bruckner AM., 1992, MATH BOHEM, V117, P42
[9]  
BRUCKNER AM, 1993, ATTI SEM MAT FIZ U M, V41, P195
[10]  
CHARATONIK JJ, 1994, DISS MATH, V333, P1